亚甲蓝治疗缺血性脑卒中的研究进展

张孟钦 卢剑飞 陈春花

解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 677-683.

PDF(120 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(120 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 677-683. DOI: 10.16098/j.issn.0529-1356.2019.05.023
综述

亚甲蓝治疗缺血性脑卒中的研究进展

  • 张孟钦1 卢剑飞2 陈春花1*
作者信息 +

Progress in the therapeutic use of methylene blue in ischemic stroke

  • ZHANG Meng-qin1 LU Jian-fei2 CHEN Chun-hua 1*
Author information +
文章历史 +

摘要

脑卒中作为全球高致死、高致残的疾病,一直被广泛研究。亚甲蓝作为一种被美国食品药品管理局(FDA)批准用于治疗高铁血红蛋白血症和氰化物中毒的药物已有一百二十余年,而在近期研究中发现其具有神经保护作用,并在缺血性脑卒中的动物模型中展现出良好的保护作用。我们就近年来亚甲蓝治疗缺血性脑卒中的研究进行简要综述。

Abstract

Stroke has been widely studied as a highly lethal and highly disabling disease worldwide. Methylene blue approved by the Food and Drug Administration(FDA) of the United States has been used in the treatment of methemoglobinemia and cyanide poisoning for more than one hundred and twenty years. In recent studies, it has been found to have neuroprotective effects and is effective in a few of animal models of ischemic stroke. This article briefly reviews the recent research on the therapeutic use of methylene blue in ischemic stroke.

关键词

 亚甲蓝 / 缺血性脑卒中 / 神经保护

Key words

Methylene blue / Ischemic stroke / Neuroprotection

引用本文

导出引用
张孟钦 卢剑飞 陈春花. 亚甲蓝治疗缺血性脑卒中的研究进展[J]. 解剖学报. 2019, 50(5): 677-683 https://doi.org/10.16098/j.issn.0529-1356.2019.05.023
ZHANG Meng-qin LU Jian-fei CHEN Chun-hua. Progress in the therapeutic use of methylene blue in ischemic stroke[J]. Acta Anatomica Sinica. 2019, 50(5): 677-683 https://doi.org/10.16098/j.issn.0529-1356.2019.05.023

参考文献

 [1] Wang LD, Wang JH, Peng B, et al. Summary of “China Stroke Prevention Report 2016”[J]. Chinese Journal of Cerebrovascular Diseases, 2017,14(4):217-224. (in Chinese)
王龙德, 王金环, 彭斌, 等. 《中国脑卒中防治报告2016》概要 [J]. 中国脑血管病杂志, 2017, 14(4): 217-224.
 [2] Ma Y, Li L, Kong L, et al. Pinocembrin protects blood-brain barrier function and expands the therapeutic time window for tissue-type plasminogen activator treatment in a rat thromboembolic stroke model [J]. Biomed Res Int, 2018, 2018: 8943210.
 [3] Sussman ES, Connolly ES Jr. Hemorrhagic transformation: a review of the rate of hemorrhage in the major clinical trials of acute ischemic stroke [J]. Front Neurol, 2013, 4: 69.
 [4] Eltzschig HK, Eckle T. Ischemia and reperfusion- -from mechanism to translation [J]. Nat Med, 2011, 17(11): 1391-1401.
 [5] Ginimuge PR, Jyothi SD. Methylene blue: revisited [J]. J Anaesthesiol Clin Pharmacol, 2010, 26(4): 517-520.
 [6] Rojas JC, Bruchey AK,Gonzalez-Lima F.Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue [J]. Prog Neurobiol, 2012, 96(1): 32-45.[7] Zhang X, Rojas JC, Gonzalez-Lima F. Methylene blue prevents neurodegeneration caused by rotenone in the retina [J]. Neurotox Res, 2006, 9(1): 47-57.
 [8] Walter-Sack I,Rengelshausen J, Oberwittler H, et al. High absolute bioavailability of methylene blue given as an aqueous oral formulation [J]. Eur J Clin Pharmacol, 2009, 65(2): 179-189.
 [9] Peter C, Hongwan D, Kupfer A, et al. Pharmacokinetics and organ distribution of intravenous and oral methylene blue [J]. Eur J Clin Pharmacol, 2000, 56(3): 247-250.
 [10]Xu J, Liu ZA, Pei DS, et al. Calcium/calmodulin-dependent kinase Ⅱ facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury [J]. Brain Res, 2010, 1366: 197-203.
 [11]Richard MJ, Connell BJ, Khan BV, et al. Cellular mechanisms by which lipoic acid confers protection during the early stages of cerebral ischemia: a possible role for calcium [J]. Neurosci Res, 2011, 69(4): 299-307.
 [12]Gouriou Y, Demaurex N, Bijlenga P, et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons [J]. Biochimie, 2011, 93(12): 2060-2067.
 [13]Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria [J]. Biochem Pharmacol, 2005, 69(5): 719-723.
 [14]Nicotera P, Bano D. The enemy at the gates: Ca2+ entry through TRPM7 channels and anoxic neuronal death [J]. Cell, 2003, 115(7): 768-770.
 [15]Martinez-Fabregas J, Diaz-Moreno Ⅰ, Gonzalez-Arzola K, et al. Structural and functional analysis of novel human cytochrome C targets in apoptosis [J]. Mol Cell Proteomics, 2014, 13(6): 1439-1456.
 [16]Tajes M, Ill-Raga G, Palomer E, et al. Nitro-oxidative stress after neuronal ischemia induces protein nitrotyrosination and cell death [J]. Oxid Med Cell Longev, 2013, 2013: 826143.
 [17]Hurtado O, Moro MA, Cardenas A, et al. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport [J]. Neurobiol Dis, 2005, 18(2): 336-345.
 [18]Wen Y, Li W, Poteet EC, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection [J]. J Biol Chem, 2011, 286(18): 16504-16515.
 [19]Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways [J]. FASEB J, 2008, 22(3): 703-712.[20]Ahmed ME, Tucker D, Dong Y, et al. Methylene Blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats [J]. Neuroscience, 2016, 336: 39-48.
 [21]Huang S, Du F, Shih YY, et al. Methylene blue potentiates stimulus-evoked fMRI responses and cerebral oxygen consumption during normoxia and hypoxia [J]. Neuroimage, 2013, 72: 237-242.
 [22]Di Y, He YL, Zhao T, et al. Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy [J]. Mol Med, 2015, 21: 420-429.
 [23]Jiang Z, Watts LT, Huang S, et al. The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core [J]. PLoS One, 2015, 10(6): e0131929.
 [24]Shen Q, Du F, Huang S, et al. Neuroprotective efficacy of methylene blue in ischemic stroke: an MRI study [J]. PLoS One, 2013, 8(11): e79833.
 [25]Lin AL, Poteet E, Du F, et al. Methylene blue as a cerebral metabolic and hemodynamic enhancer [J]. PLoS One, 2012, 7(10): e46585.
 [26]Rodriguez P, Jiang Z, Huang S, et al. Methylene blue treatment delays progression of perfusion-diffusion mismatch to infarct in permanent ischemic stroke [J]. Brain Res, 2014, 1588: 144-149.
 [27]Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase [J]. Discov Med, 2011, 11(57): 154-159.
 [28]Xu H, Li J, Wang Z, et al. Methylene blue attenuates neuroinflammation after subarachnoid hemorrhage in rats through the Akt/GSK-3beta/MEF2D signaling pathway [J]. Brain Behav Immun, 2017, 65: 125-139.
 [29]Huang C, Tong L, Lu X, et al. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription [J]. J Cell Biochem, 2015, 116(8): 1730-1740.
 [30]Roy Choudhury G, Winters A, Rich RM, et al. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration [J]. PLoS One, 2015, 10(4): e0123096.
 [31]Ryou MG, Choudhury GR, Li W, et al. Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress [J]. Neuroscience, 2015, 301: 193-203.
 [32]Bruchey AK, Gonzalez-Lima F. Behavioral, physiological and biochemical hormetic responses to the autoxidizable dye methylene Blue [J]. Am J Pharmacol Toxicol, 2008, 3(1): 72-79.
 [33]Schirmer RH, Adler H, Pickhardt M, et al. "Lest we forget you - methylene blue... " [J]. Neurobiol Aging, 2011, 32(12):2325.
 [34]Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress [J]. Brain Res, 2016, 1637: 34-55.
 [35]Kupfer A, Aeschlimann C, Cerny T. Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy [J]. Eur J Clin Pharmacol, 1996, 50(4): 249-252.
 [36]Rojas JC, Simola N, Kermath BA, et al. Striatal neuroprotection with methylene blue [J]. Neuroscience, 2009, 163(3): 877-889.
 [37]Poteet E, Winters A, Yan LJ, et al. Neuroprotective actions of methylene blue and its derivatives [J]. PLoS One, 2012, 7(10): e48279.
 [38]Fang Q, Yan X, Li S, et al. Methylene blue ameliorates ischemia/reperfusion-induced cerebral edema: an MRI and transmission electron microscope study [J]. Acta Neurochir Suppl, 2016, 121: 227-236.
 [39]Rodriguez P, Zhao J, Milman B, et al. Methylene blue and normobaric hyperoxia combination therapy in experimental ischemic stroke [J]. Brain Behav, 2016, 6(7): e00478.
 [40]Huang L, Lu J, Cerqueira B, et al. Chronic oral methylene blue treatment in a rat model of focal cerebral ischemia/reperfusion [J]. Brain Res, 2018, 1678: 322-329. 

基金

Kappa 阿片受体在缺血性脑卒中中的作用及机制研究

PDF(120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/