基于表面解剖特征的人头部计算机断层与磁共振图像双模态融合

季达峰 马忠宾

解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 638-644.

PDF(899 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(899 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 638-644. DOI: 10.16098/j.issn.0529-1356.2019.05.016
解剖学

基于表面解剖特征的人头部计算机断层与磁共振图像双模态融合

  • 季达峰1 马忠宾2*
作者信息 +

Double modality fusion between CT and MRI for human head based on surface anatomic characters

  • JI Da-feng1 MA Zhong-bin 2*
Author information +
文章历史 +

摘要

目的 探讨基于解剖标记的点配准在人头部CT及MRI双模态配准精度。 方法 4例患者行CT及MRI扫描,将扫描数据导入3D Slicer 4. 8.1以体素渲染方式进行三维重建。在10个备选的体表解剖特征点中,基于各点的5次定位误差在CT和MRI图像上选出相对应8个的解剖部位标记点坐标,按标记点数分为4、5、6、7、8个标记点组。利用奇异值分解(SVD)算法对两个模型进行对应点配准,利用标记点配准误差(FRE)对配准精度进行评估。 结果 双模态融合误差的FRE为2.68~6.54 mm。4、5、6、7、8个标记点组分别为(5.14±0.97)mm、(4.71±0.64)mm、(4.45±0.59)mm、(4.13±0.55)mm、(3.54±0.72)mm,相邻组间差异无统计学意义,8个标记点的FRE与4个标记点的FRE相比差异有统计学意义(P<0.05)。 结论 面部表面的解剖学特征可用于CT-MRI的双模态融合;CT-MRI的双模态融合FRE随着标记点数的增加而减小。

Abstract

Objective To explore the accuracy of double modality fusion between CT and MRI for human head, based on pair anatomical points registration. Methods CT and MRI were approached in 4 patients, digital imaging and communications in medicine (DICOM) files were loaded on 3D Slicer (version 4. 8.1), the surface and brain were reconstructed automatically with volume rendering as reconstructed models, 10 surface characters were tested with localization error and would be used as fiducial points, 8 of the points would be chosen as pairpoints for registration according the localizing error after 5 localizations, 5 registration groups based on 4, 5, 6, 7, 8 fiducial points were divided. Singular value decomposition (SVD) was employed for registration as a basic algorithm, and fiducial registration error (FRE) was used to evaluate the registration error. Results FRE values of double modality fusion were 2.68-6.54 mm. FRE values of 4, 5, 6, 7, 8 fiducial points were (5.14±0.97)mm, (4.71±0.64)mm, (4.45±0.59)mm, (4.13±0.55)mm, (3.54±0.72)mm respectively. There was no statistical difference between neighbor groups, while in 4 and 8 points groups, the FRE values were different statistically. Conclusion Surface anatomic characters can be used for double modality fusion between CT and MRI; FRE values after CT-MRI double modality fusion are reduced with the increase of points.

关键词

头部 / 双模态 / 对应点配准 / 解剖特征 / 计算机断层扫描 / 磁共振成像 /

Key words

Head / Double modality / Pair-point registration / Anatomic character / Computed tomography / Magnetic resonance imaging / Human

引用本文

导出引用
季达峰 马忠宾. 基于表面解剖特征的人头部计算机断层与磁共振图像双模态融合[J]. 解剖学报. 2019, 50(5): 638-644 https://doi.org/10.16098/j.issn.0529-1356.2019.05.016
JI Da-feng MA Zhong-bin. Double modality fusion between CT and MRI for human head based on surface anatomic characters[J]. Acta Anatomica Sinica. 2019, 50(5): 638-644 https://doi.org/10.16098/j.issn.0529-1356.2019.05.016

参考文献

 [1] Sekine T,Barbosa FG,Kuhn FP,et al. PET+MR versus PET/CT in the initial staing of head and neck cancer, using a trimodality PET/CT+MR system[J]. Clin Imaging,2017,42:232-239.
 [2] Mocnik D, Ibragimov B, Xing L,et al. Segmentation of parotid glands from registered CT and MR images[J]. Phys Med,2018,52:33-41.
 [3] Bannas P,Pickhardt PJ. MR evaluation of the nontraumatic acute abdomen with CT correction[J]. Radiol Clin North Am,2015,53(6):1327-1339.
 [4] Zhang JW, Li T, Sun JZh. Multimodality medical image registration based on dividing rectangles[J].Journal of Image and Graphics, 2008,13(4):749-755. (in Chinese)
张加万,李谭,孙济洲. 基于Dividing Rectangles的多模态医学图像配准算法[J]. 中国图象图形学报,2008, 13(4):749-755.
 [5] Donoso FA, Austin KJ, McAree PR. Three new iterative closest point variant-methods that improve scan matching for surface mining terrain[J]. Robotics and Autonomous System, 2017, 95:117-128.
 [6] Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image[J]. Med Image Anal, 2018, 47:31-44.
 [7] Wang MN. Analysis of the errors in neuronavigation and research on imporving the accuracy of space registration[D]. Fudan University, 2011. (in Chinese)
王满宁. 神经导航误差分析与提高空间配准精度的研究[D].复旦大学,2011.
 [8] Zhang Y, Gu D, Ji D. The design and application of a customized navigation board for lumbar disc ablation[J]. Comp Assisted Surg, 2017, 22(S1):305-311.
 [9] Dafeng J, Yuan D, Manning W, et al. Accuracy analysis of line-based registration for image guided neurosurgery at different operating areas-a phantom study[J]. Comp Assisted Surg, 2017, 22(S1):148-156.
 [10]Fitzpatrick JM, West JB. The distribution of target registration error in rigid-body point-based registration[J]. IEEE Trans Med Imaging, 2001, 20(9):917-927.

PDF(899 KB)

Accesses

Citation

Detail

段落导航
相关文章

/