父源基因组重编程中组蛋白变体的作用

王楠 黄星卫 程香荣 姜琦 庞楠 雷蕾

解剖学报 ›› 2019, Vol. 50 ›› Issue (1) : 132-136.

PDF(1172 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1172 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (1) : 132-136. DOI: 10.16098/j.issn.0529-1356.2019.01.023
综述

父源基因组重编程中组蛋白变体的作用

  • 王楠 黄星卫 程香荣 姜琦 庞楠 雷蕾*
作者信息 +

Role of histone variants in the reprogramming of parental genomes

  • WANG Nan HUANG Xing-wei CHENG Xiang-rong JIANG Qi PANG Nan LEI Lei*
Author information +
文章历史 +

摘要

卵母细胞具有重编程精子基因组以确保胚胎正常发育的能力。精子入卵后,父源基因组会经历组蛋白替换鱼精蛋白,全基因组去甲基化等过程,从而启动胚胎发育。组蛋白H3的变体H3.3可以替换核小体中的典型组蛋白H3.1和H3.2,从而修饰染色质结构和影响基因表达。在早期胚胎发育过程中H3.3的缺失将导致染色体的过度凝集和错误分离。我们综述了组蛋白变体H3.3及其分子伴侣在精子发生、受精和早期胚胎发育中的作用,特别是H3.3对父源基因组重编程的重要性,这对理解受精后全能性合子的形成及着床前发育具有重要意义。

Abstract

Oocytes have the ability to reprogram the sperm genome to ensure normal embryonic development. After sperm enters into the egg, the paternal genome undergoes protamine to histone exchange, whole genome demethylation and other processes, which start embryonic development. Histone H3 variant H3.3 can replace canonical histones H3.1 and H3.2 in nucleosomes, thereby modifying chromatin structure and regulate gene expression. The absence of H3.3 during early embryonic development will lead to excessive chromosomal aggregation and mis-isolation. This article reviews the role of histone variant H3.3 and its chaperones in spermatogenesis, fertilization and early embryonic development. In particular, the importance of H3.3 in the reprogramming of the paternal genome is of great significance in understanding the formation of totipotent zygotes after fertilization and their preimplantation development.

关键词

受精 / 组蛋白 / 重编程 / 鱼精蛋白

Key words

Fertilization / Histone / Reprogramming / Protamine

引用本文

导出引用
王楠 黄星卫 程香荣 姜琦 庞楠 雷蕾. 父源基因组重编程中组蛋白变体的作用[J]. 解剖学报. 2019, 50(1): 132-136 https://doi.org/10.16098/j.issn.0529-1356.2019.01.023
WANG Nan HUANG Xing-wei CHENG Xiang-rong JIANG Qi PANG Nan LEI Lei. Role of histone variants in the reprogramming of parental genomes[J]. Acta Anatomica Sinica. 2019, 50(1): 132-136 https://doi.org/10.16098/j.issn.0529-1356.2019.01.023

参考文献

  [1] Gaucher J,  Reynoird N,  Montellier E, et al. From meiosis to postmeiotic events: the secrets of histone disappearance [J]. FEBS J, 2010, 277(3): 599-604.
 [2] Zhang K, Rajput SK, Wang S, et al. CHD1 regulates deposition of histone variant H3.3 during bovine early embryonic development [J]. Biol Reprod, 2016, 94(6): 140.
 [3] Sailau ZK, Bogolyubov DS, Bogolyubova IO. Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis [J]. Acta Histochem, 2017, 119(1): 18-25.
 [4] Udugama M,  Sanij E, Voon HPJ, et al. Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers [J]. Proc Nat Acad Sci USA, 2018, 115(18): 4737-4742.
 [5] Ma Y, Buttitta L. Chromatin organization changes during the establishment and maintenance of the postmitotic state [J]. Epigenetics Chromatin, 2017, 10(1): 53.
 [6] Penke TJR, McKay DJ, Strahl BD, et al. Functional redundancy of variant and canonical histone H3 lysine 9 modification in drosophila [J]. Genetics, 2018, 208(1): 229-244.
 [7] Inoue A, Zhang Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes [J]. Nat Struct Mol Biol, 2014, 21(7): 609-616.
 [8] Jang CW, Shibata Y, Starmer J, et al. Histone H3.3 maintains genome integrity during mammalian development [J]. Genes Dev, 2015, 29(13): 1377-1392.
 [9] Lin CJ, Conti M, Ramalho-Santos M. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development [J]. Development, 2013, 140(17): 3624-3634.
 [10]Holland A, Ohlendieck K. Comparative profiling of the sperm proteome [J]. Proteomics, 2015, 15(4): 632-648.
 [11]Kong Q, Banaszynski LA, Geng F, et al. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos [J]. J Biol Chem, 2018, 293(10): 3829-3838.
 [12]Inoue A, Ogushi S, Saitou M, et al. Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization [J]. Biol Reprod, 2011, 85(1): 70-77.
 [13]Soboleva TA, Nekrasov M, Pahwa A, et al. A unique H2A histone variant occupies the transcriptional start site of active genes [J]. Nat Struct Mol Biol, 2011, 19(1): 25-30.
 [14]Yuen BT, Bush KM, Barrilleaux BL, et al. Histone H3-3 regulates dynamic chromatin states during spermatogenesis [J]. Development, 2014, 141(18): 3483-3494.
 [15]Santenard A, Ziegler-Birling C, Koch M, et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 [J]. Nat Cell Biol, 2010, 12(9): 853-862.
 [16]Teperek M, Miyamoto K. Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes [J]. Reprod Med Biol, 2013, 12: 133-149.
 [17]de Rooij DG. Proliferation and differentiation of spermatogonial stem cells [J]. Reproduction, 2001, 121(3): 347-354.

 [18]Bonnefoy E, Orsi GA, Couble P, et al. The essential role of drosophila HIRA for de novo assembly of paternal chromatin at fertilization [J]. PLoS Genet, 2007, 3(10): 1991-2006.

[19]Dyer MA, Qadeer ZA, Valle-Garcia D, et al. ATRX and DAXX: mechanisms and mutations [J]. Cold Spring Harb Perspect Med, 2017, 7(3).

 [20]Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones [J]. Trends Genet, 2013, 29(11): 630-640.
 [21]Fang HT, El Farran CA, Xing QR, et al. Global H3.3 dynamic deposition defines its bimodal role in cell fate transition [J]. Nat commun, 2018, 9(1): 1537.
 [22]Tardat M, Albert M, Kunzmann R, et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner [J]. Mol Cell, 2015, 58(1): 157-171.
 [23]Hazzouri M, Pivot-Pajot C, Faure AK, et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases [J]. Eur J Cell Biol, 2000, 79(12): 950-960.
 [24]Zhou L, Baibakov B, Canagarajah B, et al. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos [J]. Development, 2017, 144(3): 519-528.
 [25]Wright SJ. Sperm nuclear activation during fertilization [J]. Curr Top Dev Biol, 1999, 46: 133-178.
 [26]Lin CJ, Koh FM, Wong P, et al. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote [J]. Dev Cell, 2014, 30(3): 268-279.
 [27]Nashun B, Hill PW, Smallwood SA, et al. Continuous histone replacement by hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis [J]. Mol Cell, 2015, 60(4): 611-625.
 [28]Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming [J]. Trends Genet, 2011, 27(5): 177-185.
 [29]Oyama K, El-Nachef D, Fang C, et al. Deletion of HP1gamma in cardiac myocytes affects H4K20me3 levels but does not impact cardiac growth [J]. Epigenet Chromatin, 2018, 11(1): 18.
 [30]Fulka H, Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition [J]. Development, 2014, 141(8): 1694-1704.
 [31]Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer [J]. Nat Revi Mol Cell Biol, 2017, 18(5): 299-314.
 [32]Rapkin LM, Ahmed K, Dulev S, et al. The histone chaperone DAXX maintains the structural organization of heterochromatin domains [J]. Epigenet Chromatin, 2015, 8: 44.
 [33]Voon HP, Hughes JR, Rode C, et al. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes [J]. Cell Reports, 2015, 11(3): 405-418.
 [34]Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3 [J]. Cell Res, 2011, 21(3): 421-434. 

基金

国家自然科学基金面上项目

PDF(1172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/