氟西汀通过上调海马内溴结构域蛋白4的表达改善慢性束缚应激所致小鼠的抑郁样行为

王贞 黄怡佳 乃爱桃 牛磊 罗诗诗 万炜 刘政海 陈熙 徐杨 曹文宇

解剖学报 ›› 2019, Vol. 50 ›› Issue (1) : 18-23.

PDF(1320 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1320 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (1) : 18-23. DOI: 10.16098/j.issn.0529-1356.2019.01.004
神经生物学

氟西汀通过上调海马内溴结构域蛋白4的表达改善慢性束缚应激所致小鼠的抑郁样行为

  • 王贞1 黄怡佳1 乃爱桃2 牛磊罗诗诗万炜1  刘政海1 陈熙1 徐杨3* 曹文宇1*
作者信息 +

Fluoxetine improving the depression-like behavior induced by chronic restraint stress by up-regulation the expression of bromodomain-containing protein 4 in hippocampus of mouse

  • WANG Zhen1 HUANG Yi-jia1 NAI Ai-tao2 NIU Lei1 LUO Shi-shi1 WAN Wei1 LIU Zheng-hai1 CHEN Xi1 XU Yang 3* CAO Wen-yu 1*
Author information +
文章历史 +

摘要

 目的 探讨氟西汀(FLX)对慢性束缚应激(CRS)所致小鼠抑郁样行为及海马内溴结构域蛋白4(BRD4)表达的影响。 方法 24只雄性昆明小鼠随机分为生理盐水对照(NS)组、抑郁模型(CRS)组、氟西汀干预(CRS+FLX)组。慢性束缚应激3周建立小鼠抑郁模型,应激的第8天至第21天 CRS+FLX组于应激前30 min腹腔注射氟西汀(10mg/kg),NS组及CRS组注射等体积生理盐水。采用糖水偏好实验、喷糖实验、强迫游泳实验、新旧事物识别实验和旷场实验检测各组小鼠行为变化;采用Western blotting及Real-time PCR法检测小鼠海马BRD4蛋白和mRNA的表达情况。 结果 与NS组相比,CRS组小鼠表现出明显的抑郁样行为,包括糖水偏好百分比显著降低(P<0.01),喷糖实验舔糖时间缩短(P<0.05),强迫游泳不动时间增加(P<0.01),新事物辨别指数降低(P<0.0001),抗抑郁药FLX干预可逆转CRS所诱导的上述抑郁样行为表现(P<0.05);与NS组相比,CRS组小鼠海马BRD4蛋白及mRNA的表达明显下调(1.;0000 ± 0.04577 比 0.08337 ± 0.01658;1.0000 ± 0.04379 比 0.6672 ± 0.03193,P<0.05),而FLX可上调抑郁小鼠海马BRD4蛋白及mRNA的表达(0.08337 ± 0.01658 比 0.4983 ± 0.08574;0.6672 ± 0.03193比0.8572 ± 0.03181,P<0.05)。 结论 氟西汀可能通过上调海马BRD4的表达改善小鼠抑郁样行为。

Abstract

Objective To investigate the effect of fluoxetine (FLX) on the expression of bromodomain-containing protein 4 (BRD4) in the hippocampus induced by chronic restraint stress (CRS), with the depression-like behaviour also being determined. Methods Twenty-four male Kunming mice were randomly divided into normal saline(NS) group, CRS group and fluoxetine(FLX) intervention(CRS+FLX) group. The mice of the CRS group were subjected to 3 weeks chronic restraint stress. The mice of CRS+FLX group were treated with fluoxetine by intraperitoneal injection 30 minutes before restraint stress from the 8 to 21 days. The mice in the NS group and CRS group were treated with NS. Depression-like behavior was determined by sucrose preference test, sucrose splash test, forced swimming test, novelty object recognition test and open field test. Expression of BRD4 in the hippocampus was determined by Western blotting and Real-time PCR. Results Compared with NS group, mice in the CRS group showed reduced sucrose preference (P<0.01) and decrease the time spent licking in Sucrose splash test (P<0.05) , increase immobility time in the forced swimming test (P<0.01) and decrease on the discrimination ratio in the novelty object recognition test, while FLX treatment effectively reversed the depression-like behavior induced by CRS (P<0.05) Compared with the NS group, CRS led to significantly decreased expression of BRD4 protein and mRNA in the hippocampus (1.000 ± 0.04577 vs 0.08337 ± 0.01658; 1.000 ± 0.04379 vs 0.6672 ± 0.03193, P<0.05), which was attenuated by FLX treatment (0.08337 ± 0.01658 vs 0.4983 ± 0.08574; 0.6672 ± 0.03193 vs 0.8572 ± 0.03181, P<0.05). Conclusion Our finding indicates that FLX could alleviate CRS-induced depression-like behavior in mice, which might be attributed to the increased expression of BRD4 in the hippocampus.

关键词

氟西汀 / 慢性束缚应激 / 抑郁症 / 溴结构域蛋白4 / 海马 / 实时定量聚合酶链反应 / 小鼠

Key words

Fluoxetine / Chronic restraint stress / Depression / Bromodomain-containing protein 4 / Hippocampus / Real-time PCR / Mouse

引用本文

导出引用
王贞 黄怡佳 乃爱桃 牛磊 罗诗诗 万炜 刘政海 陈熙 徐杨 曹文宇. 氟西汀通过上调海马内溴结构域蛋白4的表达改善慢性束缚应激所致小鼠的抑郁样行为[J]. 解剖学报. 2019, 50(1): 18-23 https://doi.org/10.16098/j.issn.0529-1356.2019.01.004
WANG Zhen HUANG Yi-jia NAI Ai-tao NIU Lei LUO Shi-shi WAN Wei LIU Zheng-hai CHEN Xi XU Yang CAO Wen-yu. Fluoxetine improving the depression-like behavior induced by chronic restraint stress by up-regulation the expression of bromodomain-containing protein 4 in hippocampus of mouse[J]. Acta Anatomica Sinica. 2019, 50(1): 18-23 https://doi.org/10.16098/j.issn.0529-1356.2019.01.004

参考文献

[1] Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies[J]. Cell Physiol Biochem, 2013,31(6):761-777.
[2] Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines[J]. Nat Rev Neurosci, 2006,7(2):137-151.
[3] Reul JM, Chandramohan Y. Epigenetic mechanisms in stress-related memory formation[J]. Psychoneuroendocrinology, 2007,32 Suppl 1:S21-S25.
[4] Ren C, Zeng L, Zhou MM. Preparation, biochemical analysis, and structure determination of the bromodomain, an acetyl-Lysine binding domain[J]. Methods Enzymol, 2016,573:321-343.
[5] Korb E, Herre M, Zucker-Scharff Ⅰ, et al. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice[J]. Nat Neurosci, 2015, 18(10):1464-1473.
[6] Magistri M, Velmeshev D, Makhmutova M, et al. The BET-Bromodomain inhibitor JQ1 reduces inflammation and Tau phosphorylation at Ser396 in the brain of the 3xTg model of Alzheimer’s disease[J]. Curr Alzheimer Res, 2016,13(9):985-995.
[7] Sartor GC, Powell SK, Brothers SP, et al. Epigenetic readers of lysine acetylation regulate cocaine-induced plasticity[J]. J Neurosci, 2015,35(45):15062-15072.
[8] Sullivan JM, Badimon A, Schaefer U, et al. Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice[J]. J Exp Med, 2015,212(11):1771-1781.
[9] Luo YW, Xu Y, Cao WY, et al. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress[J]. Neuropharmacology, 2015,89:318-324.

[10]Li K, Shen S, Ji YT, et al. Melatonin augments the effects of fluoxetine on depression-like behavior and hippocampal BDNF-TrkB signaling[J]. Neurosci Bull, 2018,34(2):303-311.

[11]Zheng X, Ma S, Kang A, et al. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice[J]. Sci Rep, 2016,6:19406.

[12]Surget A, Saxe M, Leman S, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal[J]. Biol Psychiatry, 2008,64(4):293-301.
[13]Zeng JY, Wang Zh, Niu L, et al. Effect of Panax notoginseng total saponin on lipopolysaccharide induced depression-like behavior and expression of microglia in mice[J]. Acta Anatomica Sinica, 2018(2):166-171. (in Chinese)
曾佳玉, 王贞, 牛磊, 等. 三七总皂苷对脂多糖诱导小鼠抑郁样行为及脑内小胶质细胞表达的影响[J]. 解剖学报, 2018(2):166-171.
[14]Xu Y, Cao W, Zhou M, et al. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex[J]. Behav Brain Res, 2015,286:1-10.
[15]Menard C, Hodes GE, Russo SJ. Pathogenesis of depression: Insights from human and rodent studies[J]. Neuroscience, 2016,321:138-162.
[16]Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events[J]. Neuron, 2011,69(2):359-372.
[17]Franklin TB, Russig H, Weiss IC, et al. Epigenetic transmission of the impact of early stress across generations[J]. Biol Psychiatry, 2010,68(5):408-415.
[18]Chiba S, Numakawa T, Ninomiya M, et al. Chronic restraint stress causes anxiety-and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012,39(1):112-119.
[19]Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation[J]. Neuropsychopharmacology, 2013, 38(1):124-137.
[20]Krishnan Ⅴ, Nestler EJ. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215):894-902.
[21]Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1):12-27.
[22]Vigneri R, Vigneri P, Frittitta L. Basal insulin and cardiovascular and other outcomes[J]. N Engl J Med, 2012, 367(18):17611762, 1763-1764.
[23]Eren KE, Ertugrul A. Psychiatric disorders and epigenetics[J]. Turk Psikiyatri Derg, 2012, 23(2):130-140.
[24]Madhani HD, Francis NJ, Kingston RE, et al. Epigenomics: a roadmap, but to where [J] ? Science, 2008,322(5898):43-44.
[25]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury[J]. J Neurochem, 2008, 106(3):1378-1387.
[26]Wu T, Pinto HB, Kamikawa YF, et al. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression[J]. Stem Cell Reports, 2015, 4(3):390-403.[27]Fernandez P, Scaffidi P, Markert E, et al. Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4[J]. Cell Rep, 2014,9(1):248-260. 

基金

湖南省自然科学基金青年基金项目;湖南省自然科学基金青年基金项目;湖南省教育厅重点项目;湖南省教育厅重点项目;湖南省卫生计生委科研课题计划项目;南华大学博士科研启动基金;南华大学博士科研启动基金;南华大学大学生研究性学习和创新性实验计划项目;南华大学大学生研究性学习和创新性实验计划项目;南华大学大学生研究性学习和创新性实验计划项目

PDF(1320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/