现代显微成像技术及其在细胞生物学中的应用

杨治河 闫丽 李红林 蔡亚非

解剖学报 ›› 2018, Vol. 49 ›› Issue (6) : 846-851.

PDF(244 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(244 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (6) : 846-851. DOI: 10.16098/j.issn.0529-1356.2018.06.026
综述

现代显微成像技术及其在细胞生物学中的应用

  • 杨治河1 闫丽2 李红林3 蔡亚非4*
作者信息 +

Progress of advanced microscopic imaging technology and its applications in cell biology

  • YANG Zhi-he1 YAN Li2 LI Hong-lin3 CAI Ya-fei 4*
Author information +
文章历史 +

摘要

具有高分辨率、能活体观察和三维成像的现代显微成像技术的产生和发展,为细胞生物学研究提供了有效的工具。我们在本文中阐述了几个重要的现代显微成像技术原理和技术要点以及在细胞生物学中应用的现状,包括光学显微术、电子显微术和荧光探针技术及相关技术,并对现代显微成像术的发展进行了展望。

Abstract

Advanced microscopic imaging technology is a powerful tool in cell biology research. It can be used to achieve three-dimensional imaging in vivo with high resolution. This paper introduces the principles and key points of these techniques and the current situation of their applicaions in cell biology, including optical microscopy, electron microscopy, fluorescent probes and their related techniques.Moreover, the prospect of advanced microscopic imaging technology is also discussed.

关键词

显微成像术 / 分辨率 / 活体观察 / 三维成像 /

Key words

Microscopic imaging technology / Resolution / Live observation / Three-dimensional imaging / Human

引用本文

导出引用
杨治河 闫丽 李红林 蔡亚非. 现代显微成像技术及其在细胞生物学中的应用[J]. 解剖学报. 2018, 49(6): 846-851 https://doi.org/10.16098/j.issn.0529-1356.2018.06.026
YANG Zhi-he YAN Li LI Hong-lin CAI Ya-fei. Progress of advanced microscopic imaging technology and its applications in cell biology[J]. Acta Anatomica Sinica. 2018, 49(6): 846-851 https://doi.org/10.16098/j.issn.0529-1356.2018.06.026

参考文献

[1]Abbe E. Beitrge zur theorie des mikroskops unddermikroskopischen wahrnehmung[J].Arch Mikroskop Anat,1873,9:413-420.
[2]Nickell S, Kofler C, Leis AP, et al. A visual approach to proteomics[J]. Nat Rev Mol Cell Biol,2006,7(3):225-230.
[3]Hell SW. Improvement of lateral resolution in far-field fluorescence light microscopy by using two-photon excitation with offset beams[J].Opt Commun, 1994,106(1-3):19.
[4]Willig KI, Rizzoli SO, Westphal Ⅴ, et al.STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].Nature,2006, 440(7086):935-939.
[5]Hell SW. Toward fluorescence nanoscopy[J]. Nat Biotechnol, 2003, 21(11):1347-1355.
[6]Kittel RJ, Wichmann C, Rasse TM,et al.Bruchpilotpromotes active zone assembly, Ca2+channel clustering, and vesicle releasey[J]. Science,2006, 312(5776):1051-1054.
[7]Schneckenburger H. Total internal reflection fluorescence microscoy: technical innovations and novel application[J]. Curr Opi Biotechnol, 2005, 16(1):13.
[8]Wang Ch, Wang GY, Xu ZhZh. Total internal reflection fluorescence microscopy[J]. Progress in Physics, 2002, 22(4): 406-415. (in Chinese)
王琛,王桂英,徐至展. 全内反射荧光显微术[J]. 物理学进展, 2002, 22(4):406-415.
[9]Kang SH, Kim YJ, Yeung ES. Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy[J].Anal Bioanal Chem,2007,387(8):2663-2671.
[10]Alicia S, Angélica Z, Carlos S, et al.STIM1 converts TRPC1 from a receptor-operatedto a store-operated channel: Moving TRPC1 inand out of lipid rafts[Z]. Cell Calcium,2008,44(5):479-491.
[11]Steyer JA, Almers W.A real-time view of life within 100nm of the plasmamembrane[J]. Nat Rev Mol Cell Biol, 2001,2(4):268-275.
[12]Sako Y, Ichinose J, Morimatsu M,etal.Opticalbioimaging: from living tissue to a single molecule:single molecule visualization of cell signalling processes ofepidermal growth factor receptor[J].J Pharmacol Sci, 2003,93(3):253-258.
[13]Xia S, Xu L, Bai L, et al. Labeling and dynamic imagingof synaptic vesicle-like microvesicles in PC12 cells using TIRFM[J]. Brain Res, 2004, 997(2):159-164.
[14]Adams MC, Salmon WC, Gupton SL, et al. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells[J]. Methods, 2003,29(1):29-41.
[15]Li HY, Zhang Zh, Pu ZhB, et al. Study on microlens-array confocal microscopy measurement technology[J]. Optical Technique, 2008, 34(1):94-97. (in Chinese)
李海燕,张琢,浦昭邦,等. 共焦显微扫描探测技术的发展[J].光学技术,2008,34(1):94-97.
[16]Petráň M, Hadravsky M, Boyde A. The tandem scanning reflected light microscope[J]. Int Agrophys, 1995, 9(4):661-664.
[17]Tadakuma H, Yamaguchi J, Ishihama Y, et al. Imaging of single fluorescent molecules using video-rate confocal microscopy[J]. Biochem Biophys Res Commun, 2001, 287(2):322.
[18]Ou G, Blacque OE, Snow JJ,  et al. Functional coordination of intraflagellar transport motors[J]. Nature,2005,436 (7050):583-587. 
[19]Xie XS, Yu J, Yang WY.  Living cells as test tubes[J]. Science,2006, 312(5771):228-230.
[20]Evans CL,Potma EO, Puoris’haag M, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J].Proc Natl Acad Sci USA,2005,102(46):16807-16812.
[21]Li HM, Fang XX, Chen JJ, et al. Progress in application of quantum dot labeling to biology[J]. Biomedical Engineering Foreing Medical Sciences, 2004, 27(5):281-285. (in Chinese)
李鸿梅,房学迅,陈娟娟,等.量子点荧光标记应用于生物学的研究进展[J].国外医学生物医学工程分册, 2004, 27(5):281-285.  
[22]Bruchez MJ, Moronne M, Gin P, et al.Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281 (5385):2013-2016.
[23]Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
[24]Alivisatos AP. Semiconductorclusters,nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[25]Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells in vivo imaging and diagnostics[J]. Science, 2005,307 (5709):538-544.
[26]Dahan M, Laurence T, Pinaud F, et al. Time-gated biological imaging by use of colloidal quantum dots[J]. Opt Lett, 2001, 26(11):825-827.
[27]Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking[J]. Advanced Materials, 2004, 16(12): 961-966.
[28]Winter JO, Liu TY, Korgel BA,et al.Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells[J]. Adv  Mater,2010,13(22):1673-1677.
[29]Akerman ME, Chan WC, Laakkonen P,et al. Nanocrystal targeting in vivo [J]. Proc Natl Acad Sci USA, 2002, 99(20): 12617-12621.
[30]Giepmans BN, Adams SR, Ellisman MH,et al.The fluorescent toolbox for assessing proteinlocation and function[J].Science, 2006, 312(5771):217-224.
[31]Shaner NC, Patterson GH, Davidson MW.Advances in fluorescent protein technology[J]. J Cell Sci, 2007,120(24):4247-4260. 
[32]Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J], J Cell Comp Physiol, 1962, 59: 223-239.
[33]Chalfiee M, Tu Y, Euskirchen G,et al.Green fluorescent protein as a marker for gene expression[J].Science,1994,263(5148):802-805, 
[34]Tsien RY.The green fluorescent protein [J]. Tsien RY Biochem,1998, 67: 509-544.
[35]Bates M, Blosser TR, Zhuang X. Short-range spectroscopic ruler based on a single-molecule optical switch[J].Phys Rev Lett,2005, 94(10):108101-108104.
[36]Bates M, Huang B, Dempsey GT, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J].Science,2007, 317(5845):1749-1753.
[37]Huang B,Wang W, Bates M, et al.Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science,2008,319(5864):810-813.
[38]F?rster Th. Delocalized excitation and excitation transer. In: Sinanoglu O, ed. Modern Quantum Chemistry Part Ⅲ[M]. New York: Academic Press, 1965:93-137.
[39]Takanishi CL, Bykova EA, Cheng W, et al.GFP-based FRET analysis in live cells[J].Brain Res,2006,1091(1):132-139.
[40]Rahul R,Hohng S,Ha T.A practical guide to single-molecule FRET[J].Nat Methods,2008, 5(6):507-516.
[41]Hu LA, Zhou T, Hamman BD, et al. Ahomogeneous G protein-coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer[J]. Assay and Drug Dev Technol, 2008, 6(4):543-550.
[42]Zheng D. Fluorescence resonance energy transfer microscopy and its recent development [J].Modern Instrument and Medical Treatment, 2003, 9(1):43-46. (in Chinese)
郑东.荧光共振能量转移显微术及其新进展[J].新技术应用, 2003, 9(1):43-46. 
[43]Taylor KA, Glaeser RM. Electron diffraction of frozenhydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[44]Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitri-fiedspecimens[J]. Q Rev Biophys,1988, 21(2):129-228.
[45]DeRosier DJ, Klug A. Reconstruction of three dimensionalstructures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[46]Walz T, Grigorieff N. Electron crystallography of two-dimensional crystals of membrane proteins[J]. J Struct Biol, 1998, 121(2):142-161.
[47]Robinson CV, Sali A, Baumeister W.The molecular sociology of the cell[J]. Nature, 2007, 450(172): 973-982.
[48]Chiu W, Baker ML, Jiang W, et al. Deriving folds ofmacromolecular complexes through electron cryo-microscopyand bioinformatics approaches[J].Curr Opin Struc Biol, 2002, 12(2):263-269.
[49]Van Heel M, Gowen B, Matadeen R, et al. Single-particle electron cryo-microscopy: towardsatomic resolution[J]. Q Rev Biophys, 2000, 33(4):307-369.
[50]Zhu P, Liu J, Bess JJr, et al. Distribution and three-dimensionalstructure of AIDS virus envelope spikes[J]. Nature, 2006, 441(15): 847-851.
[51]Hart RG. Electron microscopy of unstained biological material: the polytropic montage[J].Science, 1968, 159(3822): 1464-1467.
[52]Medalia O, Weber I,Fraugkis AS, et al. Macromoleculararchitecture in eukaryotic cells visualized by cryoelectrontomography[J].Science, 2002, 298(8): 1209-1213.
[53]Beck M, F?rster F, Ecke M, et al.Nuclear pore complex structure and dynamics revealed by cryoelectron tomography[J]. Science, 2004, 306(5700):1387-1390.

基金

“十一五”国家科技支撑计划项目

PDF(244 KB)

Accesses

Citation

Detail

段落导航
相关文章

/