异甘草素对低氧诱导的大鼠肺动脉结构重建的影响

张善强 李雪梅 姚立杰 郭林娜 姜杨 金海峰

解剖学报 ›› 2018, Vol. 49 ›› Issue (4) : 492-496.

PDF(429 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(429 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (4) : 492-496. DOI: 10.16098/j.issn.0529-1356.2018.04.013
组织学胚胎学发育生物学

异甘草素对低氧诱导的大鼠肺动脉结构重建的影响

  • 张善强1 李雪梅2 姚立杰1 郭林娜1 姜杨1 金海峰1*
作者信息 +

Effects of isoliquiritigenin on pulmonary vascular remodeling in chronic hypoxia rat model

  • ZHANG Shan-qiang1 LI Xue-mei2 YAO Li-jie1 GUO Lin-na1 JIANG Yang1 JIN Hai-feng 1*
Author information +
文章历史 +

摘要

目的  观察异甘草素对缺氧性肺动脉高压(HPH)大鼠模型的肺动脉压力的变化,右心室肥厚程度及肺血管结构重建的影响,探讨异甘草素对HPH的抑制作用及其可能机制。方法  雄性SD大鼠30只随机分为对照组、HPH组、异甘草素组,每组各10只。HPH组和异甘草素组大鼠置于缺氧箱中建立大鼠HPH模型。异甘草素组中,每只大鼠腹腔注射异甘草素剂量为10 mg/(kg·d),从缺氧前1周开始给药直到缺氧结束。对照组和HPH组大鼠腹腔注射等体积0.5% DMSO。测定各组大鼠平均右心室压力(RVSP);称重法测得各组大鼠右心室游离壁(RV)及左心室加室间隔(LV+S)质量,以及RV/(LV+S);HE染色观察肺动脉病理形态改变,计算血管厚度百分比(WT%)及面积百分比(WA%);ELISA法检测各组大鼠血清及肺组织中的超氧化物歧化酶(SOD)及丙二醛(MDA)的含量。Real-time PCR检测各组大鼠肺组织中的NADPH氧化酶4(NOX4) mRNA的表达。结果  HPH组大鼠RVSP、RV/LV+S、WT%,以及WA%明显高于对照组大鼠(P<0.01),然而异甘草素组大鼠RVSP、RV/LV+S、WT%,以及WA%均明显低于HPH组大鼠(P<0.01)。HPH组大鼠肺组织及血清中的SOD含量较对照组明显降低,而MDA含量则明显增高(P<0.01)。异甘草素组大鼠肺组织及血清中的SOD含量较HPH组大鼠明显增高,而MDA含量则明显降低(P<0.01)。 Realtime PCR结果显示,异甘草素有效抑制了低氧诱导的大鼠肺组织中NOX4 mRNA的高表达(P<0.01)。结论  异甘草素抑制由低氧诱导的HPH大鼠肺动脉压力升高、右心室肥厚,以及肺动脉管壁的增厚,可能与异甘草素抑制HPH大鼠体内的氧化损伤有关。

Abstract

Objective  To investigate the possible effect and the underlying mechanism of isoliquiritigenin (ISL) on hypoxic pulmonary hypertension(HPH)through observation of the changes of pulmonary artery pressure, vascular remodeling, and right ventricular hypertrophy in a chronic hypoxia rat model. Methods  Thirty male Sprague-Dawley rats were randomly divided into 3 groups (10 rats per group): normoxia group, hypoxia group and hypoxia group treated with ISL. For hypoxia group treated with ISL, rats were injected intraperitoneally ISL[10 mg/(kg·day), dissolved in 0.5% DMSO]. For normoxia and hypoxia groups, rats were injected intraperitoneally equal amount of 0.5% DMSO. After 4 weeks hypoxia exposure, the right ventricle systolic pressure (RVSP) was recorded using Power Lab Software. The weight ratio of [right ventricle (RV) / left ventricle +septum (LV+S) ] was calculated as an index of RV hypertrophy. After HE staining, the percent medial wall thickness (WT%) and percent medial wall area (WA%) in small pulmonary arteries were determined. The content of superoxide dismutase (SOD) and malonaldehyde (MDA) were measured using commercial kits. NADPH oxidase 4(NOX4) mRNA levels in lung tissues were measured by Real-time PCR. Results  The average RVSP, ratio of RV/LV+S, WT%, and WA% of hypoxia group were increased significantly compared with the normoxia group (P<0.01). However, the average RVSP, ratio of RV/LV+S, WT%, and WA% of hypoxia treated with ISL group were much lower than those of hypoxia group (P<0.01). In addition, the result showed that hypoxia decreased the level of SOD, companied with an increased level of MDA both in lung tissue and in serum (P<0.01). ISL treatment elevated the level of SOD and reduced the level of MDA (P<0.01). Real-time PCR result showed ISL obviously down-regulated the NOX4 mRNA levels in lung tissues (P<0.01). Conclusion  ISL may have beneficial effects on the HPH and these effects may be related to the inhibition of the oxidative stress caused by hypoxia.

关键词

异甘草素 / 缺氧性肺动脉高压 / 活性氧 / 实时定量聚合酶链反应 / 大鼠

Key words

Isoliquiritigenin / Hypoxic pulmonary hypertension / Reactive oxygen species / Real-time PCR / Rat

引用本文

导出引用
张善强 李雪梅 姚立杰 郭林娜 姜杨 金海峰. 异甘草素对低氧诱导的大鼠肺动脉结构重建的影响[J]. 解剖学报. 2018, 49(4): 492-496 https://doi.org/10.16098/j.issn.0529-1356.2018.04.013
ZHANG Shan-qiang LI Xue-mei YAO Li-jie GUO Lin-na JIANG Yang JIN Hai-feng. Effects of isoliquiritigenin on pulmonary vascular remodeling in chronic hypoxia rat model[J]. Acta Anatomica Sinica. 2018, 49(4): 492-496 https://doi.org/10.16098/j.issn.0529-1356.2018.04.013

参考文献

[1] Hoeper MM, Ghofrani HA, Grunig E, et al. Pulmonary hypertension [J]. Dtsch Arztebl Int, 2017,114(5):73-84.
[2] Shi L, Zeng HP, Tang XY, et al. An ultrastructural study on effect of hypoxic pulmonary vascular in young rats by heme-oxygenase carbon-monoxide system [J]. Acta Anatomica Sinica, 2003,34(2):177-181. (in Chinese)
石琳,曾和平,汤秀英,等. CO/HO体系影响缺氧性肺动脉高压幼年大鼠肺动脉超微结构的研究 [J]. 解剖学报,2003,34(2):177-181
[3] Peng F, Du Q, Peng C, et al. A review: the pharmacology of isoliquiritigenin [J]. Phytother Res, 2015,29(7):969-977.
[4] Traboulsi H, Cloutier A, Boyapelly K, et al. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection [J]. Antimicrob Agents Chemother, 2015,59(10):6317-6327.
[5] Zhang X, Zhu P, Zhang X, et al. Natural antioxidant-isoliquiritigenin ameliorates contractile dysfunction of hypoxic cardiomyocytes via ampk signaling pathway [J]. Mediators Inflamm, 2013,2013:390890.
[6] Zhao H, Yuan X, Li D, et al. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide [J]. Molecules, 2013,18(8):8786-8798.
[7] Yang MH, Kim J, Khan IA, et al. Nonsteroidal anti-inflammatory drug activated gene-1 (nag-1) modulators from natural products as anticancer agents [J]. Life Sci, 2014,100(2):75-84.
[8] Yadav VR, Prasad S, Sung B, et al. The role of chalcones in suppression of nf-kappab-mediated inflammation and cancer [J]. Int Immunopharmacol, 2011,11(3):295-309.
[9] Jin H, Wang Y, Zhou L, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells [J]. J Pineal Res, 2014,57(4):442-450.
[10] Freund-Michel Ⅴ, Guibert C, Dubois M, et al. Reactive oxygen species as therapeutic targets in pulmonary hypertension [J]. Ther Adv Respir Dis, 2013,7(3):175-200.
[11] Wong CM, Bansal G, Pavlickova L, et al. Reactive oxygen species and antioxidants in pulmonary hypertension [J]. Antioxid Redox Signal, 2013,18(14):1789-1796.
[12] Perez-Vizcaino F, Cogolludo A, Moreno L. Reactive oxygen species signaling in pulmonary vascular smooth muscle [J]. Respir Physiol Neurobiol, 2010,174(3):212-220.
[13] Resta TC, Broughton BR, Jernigan NL. Reactive oxygen species and rhoa signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension [J]. Adv Exp Med Biol, 2010,661:355-373.
[14] Aggarwal S, Gross CM, Sharma S, et al. Reactive oxygen species in pulmonary vascular remodeling [J]. Compr Physiol, 2013,3(3):1011-1034.
[15] Peng JJ, Liu B, Xu JY, et al. Nadph oxidase: its potential role in promotion of pulmonary arterial hypertension [J]. Naunyn Schmiedebergs Arch Pharmacol, 2017,390(4):331-338.
[16] Frazziano G, Champion HC, Pagano PJ. Nadph oxidase-derived ros and the regulation of pulmonary vessel tone [J]. Am J Physiol Heart Circ Physiol, 2012,302(11):H2166-2177.
[17] Mittal M, Roth M, Konig P, et al. Hypoxia-dependent regulation of nonphagocytic nadph oxidase subunit nox4 in the pulmonary vasculature [J]. Circ Res, 2007,101(3):258-267.
[18] Ismail S, Sturrock A, Wu P, et al. Nox4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3 [J]. Am J physiol Lung Cell Mol Physiol, 2009,296(3):L489-499.
[19] Hou C, Li W, Li Z, et al. Synthetic isoliquiritigenin inhibits human tongue squamous carcinoma cells through its antioxidant mechanism [J]. Oxid Med Cell Longev, 2017,2017:1379430.
[20] Cao LJ, Li HD, Yan M, et al. The protective effects of isoliquiritigenin and glycyrrhetinic acid against triptolide-induced oxidative stress in hepg2 cells involve nrf2 activation [J]. Evid Based Complement Alternat Med, 2016,2016:8912184.

PDF(429 KB)

Accesses

Citation

Detail

段落导航
相关文章

/