氧化应激在组织再生中的作用的研究进展

郭建林 闫培硕 徐存拴

解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 412-418.

PDF(296 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(296 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 412-418. DOI: 10.16098/j.issn.0529-1356.2018.03.024
综述

氧化应激在组织再生中的作用的研究进展

  • 郭建林1,2* 闫培硕1,2 徐存拴1,2
作者信息 +

Research progress of 0xidative stress in tissue regeneration

  • GUO Jian-lin1,2* YAN Pei-shuo1,2 XU Cun-shuan1,2#br#
Author information +
文章历史 +

摘要

活性氧在细胞增殖、分化、凋亡中发挥着重要作用,氧化应激是机体内活性氧的生成和清除不平衡所引起的一种机体应激反应,低浓度的活性氧对细胞的生长和分化是有利的,可作为信号分子诱导细胞的增殖。研究表明,动物的肝、肌肉、心肌、神经、肢和尾等在受到损伤后,均具有一定的自身修复和再生能力,组织再生与人类疾病的发生及治疗密切相关,在这些过程中均有氧化应激的参与。我们概述了氧化应激在不同组织器官再生过程中的作用及其机制,为揭示组织再生机制和人类疾病的治疗提供理论依据。

Abstract

Reactive oxygen species play a critical role in cell proliferation, differentiation and apoptosis, oxidative stress, as a stress response, resultsed from the imbalance between the production and removal of reactive oxygen species within body. Low concentration of reactive oxygen species is favorable for cell growth and differentiation, and could be regarded as an essential signal to induce cell proliferation. It has been shown that the damaged animal organs, such as liver, muscle, heart, nerves, limb and tail, have ability to repair and regenerate. Tissue regeneration is closely associated with human disease and treatment, and oxidative stress is involved in these processes. This paper summarizes the role of oxidative stress and its mechanism in the process of tissue regeneration, which would provide the basis for the mechanism of regeneration and the treatment of human diseases especially regenerative medicine in the future.

关键词

氧化应激 / 活性氧 / 细胞增殖 / 再生

Key words

Oxidative stress / Reactive oxygen species / Cell proliferation / Regeneration

引用本文

导出引用
郭建林 闫培硕 徐存拴. 氧化应激在组织再生中的作用的研究进展[J]. 解剖学报. 2018, 49(3): 412-418 https://doi.org/10.16098/j.issn.0529-1356.2018.03.024
GUO Jian-lin1 YAN Pei-shuo XU Cun-shuan. Research progress of 0xidative stress in tissue regeneration[J]. Acta Anatomica Sinica. 2018, 49(3): 412-418 https://doi.org/10.16098/j.issn.0529-1356.2018.03.024

参考文献

[1]Paniker NV, Srivastava SK, Beutler E. Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress[J]. Biochimica et Biophysica Acta, 1970, 215(3): 456-460.
 [2]Kmiecik B, Skotny A, Batycka M, et al. Influence of oxidative stress on tissue regeneration[J]. Polimery W Medycynie, 2013, 43(3): 191-197.
 [3]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell B, 2007, 39(1): 44-84.
 [4]Serras F. The benefits of oxidative stress for tissue repair and regeneration[J]. Fly, 2016, 10(3): 128-133.
 [5]Vince AR, Hayes MA, Jefferson BJ, et al. Hepatic injury correlates with apoptosis, regeneration, and nitric oxide synthase expression in canine chronic liver disease[J]. Veterinary Pathol, 2014, 51(5): 932-945.
 [6]Si M, Zhang L, Chaudhry MT, et al. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance[J]. Appl Rnviron Microbiol, 2015, 81(8): 2781-2796.
 [7]Finkel T. Signal transduction by mitochondrial oxidants[J]. J Biol Chem, 2012, 287(7): 4434-4440.
 [8]Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response[J]. Biochimica et Biophysica Acta, 2006, 1757(9-10): 1371-1387.
 [9]Sen CK, Roy S. Redox signals in wound healing[J]. Biochimica et Biophysica Acta, 2008, 1780(11): 1348-1361.
 [10]Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, et al. ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during drosophila regeneration[J]. PLoS Genetics, 2015, 11(10): e1005595.
 [11]Tonks NK. Redox redux: revisiting PTPs and the control of cell signaling[J]. Cell, 2005, 121(5): 667-670.
 [12]Pang YL,Zhang WG,Zhang Y, et al. Role of NF-E2-related factor 2 in retinal cell protection [J]. Acta Anatomica Sinica,2017,48(5): 617-621. (in Chinese)
庞仪琳,张卫光,张艳 等.NF_E2相关因子2对视网膜细胞保护作用的研究进展[J].解剖学报,2017,48(5):617-621.
 [13]Chen B, Lu Y, Chen Y, et al. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. J Endocrinol, 2015, 225(3): R83-99.
 [14]Dayoub R, Vogel A, Schuett J, et al. Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration[J]. Mol Med, 2013, (19):237-244.
 [15]Beyer TA, Xu W, Teupser D, et al. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance[J]. EMBO Journal, 2008, 27(1): 212-223.[16]Zou Y, Lee J, Nambiar SM, et al. Nrf2 is involved in maintaining hepatocyte identity during liver regeneration[J]. PLoS One, 2014, 9(9): e107423.
 [17]Alizai PH, Bertram L, Fragoulis A, et al. In vivo imaging of antioxidant response element activity during liver regeneration after partial hepatectomy[J]. J Surg Res, 2016, 206(2): 525-535.
 [18]Mercurio F, Manning AM. Multiple signals converging on NF-kappaB[J]. Curr Opin Cell Biol, 1999, 11(2): 226-232.
 [19]Muriel P. NF-kappaB in liver diseases: a target for drug therapy[J]. JAT, 2009, 29(2): 91-100.
 [20]Cook DJ, Patra B, Kuttippurathu L, et al. A novel, dynamic pattern-based analysis of NF-kappaB binding during the priming phase of liver regeneration reveals switch-like functional regulation of target genes[J]. Front Physiol, 2015, 6:189.
 [21]Zhao WM, Qin YL, Niu ZP, et al. Branches of the NF-kappaB signaling pathway regulate proliferation of oval cells in rat liver regeneration[J]. Genet Mol Res, 2016, 15(4):gmr.15017750.
 [22]Chang CF, Zhao WM, Mei JX, et al. Branches of NF-kappab signaling pathway regulate hepatocyte proliferation in rat liver regeneration[J]. Genet Mol Res, 2015, 14(3): 7643-7654.
 [23]Yamada Y, Kirillova I, Peschon JJ, et al. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor[J]. Proc Natl Acad Sci USA, 1997, 94(4): 1441-1446.
 [24]Plumpe J, Malek NP, Bock CT, et al. NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration[J]. Am J Physiol Gastroint Liver Physiol, 2000, 278(1): G173-183.
 [25]Ozaki M, Haga S, Zhang HQ, et al. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1[J]. Cell Death Differ, 2003, 10(5): 508-515.
 [26]Haga S, Ogawa W, Inoue H, et al. Compensatory recovery of liver mass by Akt-mediated hepatocellular hypertrophy in liver-specific STAT3-deficient mice[J]. J Hepatol, 2005, 43(5): 799-807.
 [27]Jackson LN, Larson SD, Silva SR, et al. PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy[J]. Am J Physiol Gastroint Liver Physiol, 2008, 294(6): G1401-1410.
 [28]Yang X, Zhu L, Zhao W, et al. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration[J]. Gene, 2016, 594(1): 66-73.
 [29]Xu C, Zhi J, Zhao W, et al. Comparative analysis of the role of JNK signaling pathway in regulating cell proliferation and apoptosis of rat liver regeneration and rat acute hepatic failure[J]. Genetika, 2012, 48(8): 909-917.
 [30]Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends in Cell Biol, 2005, 15(12): 666-673.
 [31]Le Moal E, Pialoux V, Juban G, et al. Redox control of skeletal muscle regeneration[J]. Antioxid Redox Signal, 2017, 27(5): 276-310.
 [32]Lee S, Shin HS, Shireman PK, et al. Glutathione-peroxidase-1 null muscle progenitor cells are globally defective[J]. Free Radic Biol & Med, 2006, 41(7): 1174-1184.
 [33]Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metab, 2009, 9(5): 407-416.
 [34]Liang Y, Li J, Lin Q, et al. Research progress on signaling pathway-associated oxidative stress in endothelial cells[J]. Oxid Med Cell Longev, 2017 (2017):1-8.
 [35]Fu X, Zhu M, Zhang S, et al. Obesity impairs skeletal muscle regeneration through inhibition of AMPK[J]. Diabetes, 2016, 65(1): 188-200.
 [36]Zaccagnini G, Martelli F, Magenta A, et al. p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia[J]. J Biol Chem, 2007, 282(43): 31453-31459.
 [37]Al-Sawaf O, Fragoulis A, Rosen C, et al. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury[J]. J Pathol, 2014, 234(4): 538-547.
 [38]Togliatto G, Trombetta A, Dentelli P, et al. Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression[J]. J Am Heart Assoc, 2013, 2(6): e000376.
 [39]Ataie A, Shadifar M, Ataee R. Polyphenolic antioxidants and neuronal regeneration[J]. Basic Clin Neurosci, 2016, 7(2): 81-90.
 [40]Yao Y, Miao W, Liu Z, et al. Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice[J]. Transl Stroke Res, 2016, 7(6): 535-547.
 [41]Szepanowski F, Donaldson DM, Hartung HP, et al. Dimethyl fumarate accelerates peripheral nerve regeneration via activation of the anti-inflammatory and cytoprotective Nrf2/HO-1 signaling pathway[J]. Acta Neuropathol, 2017, 133(3): 489-491.
 [42]Rapozzi V, Comelli M, Mavelli I, et al. Melatonin and oxidative damage in mice liver induced by the prooxidant antitumor drug, adriamycin[J]. In Vivo, 1999, 13(1): 45-50.
 [43]Kaya Y, Savas K, Sarikcioglu L, et al. Melatonin leads to axonal regeneration, reduction in oxidative stress, and improved functional recovery following sciatic nerve injury[J]. Curr Neurovasc Res, 2015, 12(1): 53-62.
 [44]Saijilafu, Hur EM, Liu CM, et al. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1[J]. Nat Commun, 2013, 4:2690.
 [45]Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration[J]. Neuron, 2004, 43(1): 57-67.
 [46]Hammarlund M, Nix P, Hauth L, et al. Axon regeneration requires a conserved MAP kinase pathway[J]. Science, 2009, 323(5915): 802-806.
 [47]Wang Q,Wu Q,Wang SL, et al. Changes of peroxiredoxin Ⅲ,catalases and superoxide dismutases expression in the heart of rats with hepatic ischemia-reperfusion injury[J]. Acta Anatomica Sinica, 2015, 46 (6): 832-836. (in Chinese)
王切.吴琼.王素玲 等.大鼠肝缺血再灌注损伤模型心内过氧化物酶Ⅲ、过氧化氢酶及超氧化物歧化酶的表达变化[J]. 解剖学报,2015,46 (6): 832-836.
 [48]Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science, 2011, 331(6020): 1078-1080.
 [49]Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death[J]. Science, 1996, 274(5288): 782-784.
 [50]Karra R, Knecht AK, Kikuchi K, et al. Myocardial NF-kappaB activation is essential for zebrafish heart regeneration[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13255-13260.[51]Han P, Zhou XH, Chang N, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism[J]. Cell Res, 2014, 24(9): 1091-1107.
 [52]Parente V, Balasso S, Pompilio G, et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart[J]. PLoS One, 2013, 8(1): e53748.
 [53]Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice[J]. Nature, 2017, 541(7636): 222-227.
 [54]Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals[J]. Nat Revi Genet, 2010, 11(10): 710-722.
 [55]Gauron C, Rampon C, Bouzaffour M, et al. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed[J]. Sci Rep, 2013, 3:2084.
 [56]Courtial L, Picco V, Grover R, et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells[J]. Sci Rep, 2017, 7:45713.
 [57]Alibardi L. Morphological and cellular aspects of tail and limb regeneration in lizards. A model system with implications for tissue regeneration in mammals[J]. Adv Anat Embryol Cell Biol, 2010, 207: iii, v-x,1-109.
 [58]Zhang Q, Wang Y, Man L, et al. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration[J]. Sci Rep, 2016, 6:20752.
 [59]Love NR, Chen Y, Ishibashi S, et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration[J]. Nat Cell Biol, 2013, 15(2): 222-228.
 [60]Hagemann JH, Thomasova D, Mulay SR, et al. Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2[J]. Nephrol, dia Transplant, 2013, 28(8): 2028-2037.
 [61]Zhaleh F, Amiri F, Mohammadzadeh-Ⅴardin M, et al. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced acute kidney injury rats[J]. Iran J Basic Med Sci, 2016, 19(3): 323-329.
 [62]Kulkarni OP, Hartter I, Mulay SR, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration[J]. JASN, 2014, 25(5): 978-989.
 [63]Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study[J]. Lancet, 2012, 380(9838): 230-237. 

基金

河南省基础与前沿技术研究计划;河南师范大学博士启动基金

PDF(296 KB)

Accesses

Citation

Detail

段落导航
相关文章

/