组织器官透明化技术在三维成像研究中的应用

李瑛泽 邵志华 李思光

解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 400-405.

PDF(447 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(447 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 400-405. DOI: 10.16098/j.issn.0529-1356.2018.03.022
综述

组织器官透明化技术在三维成像研究中的应用

  • 李瑛泽 邵志华 李思光*
作者信息 +

Application of clearing methods on tissues in the three-dimensional imaging research

  • LI Ying-ze SHAO Zhi-hua LI Si-guang*
Author information +
文章历史 +

摘要

 随着显微成像技术的发展和大数据采集处理系统的不断革新,生物组织成像分析由二维组织切片成像发展到组织器官的三维成像技术。但是,由于组织器官的不透明导致的光线散射,使成像的深度成为一大难题。近年来,组织器官透明化技术取得了很大的发展,该技术通过提高组织的透明度,大大加深了成像深度,从而使得对组织器官的三维成像分析在不需要进行组织切片的情况下得以实现。根据透明化试剂亲水性不同,可将其分为脂溶性透明化技术和水溶性透明化技术,前者减少了组织中的水分,使透明化更加彻底有效;而后者则利用水分子在蛋白分子周围形成的水化膜提高了荧光蛋白稳定性,更利于研究的进行。我们将按照分类对不同透明化技术作出介绍,并从透明化时间长短、荧光保留度等方面进行优劣比较。

Abstract

With the development of the microscopy and the big data acquisition processing system, the research direction gradually becomes the construction of biological structures by 3D imaging. However, because of opaque which leads to scattering of imaging light through the tissues, the depth of the imaging becomes a challenge. A technique named “clearing” can increase the organization transparency so that they can enhance the depth of the imaging and have a three-dimensional reconstruction. Being hydrophilic, the clearing reagents were divided into solvent-based clearing and aqueous-based clearing. The solvent-based clearing reduced water in the tissue and aqueous-based clearing used the hydration shell made by water to keep the fluorescent protein stability. In this article we introduced different clearing method and compared them from clearing time and retention in the fluorescence.

关键词

透明化 / 显微成像 / 三维重建 / 脂质去除 / 荧光稳定性

Key words

Clearing / Microscopy imaging / Three-dimensional reconstruction / Lipid removal / Fluorescent stability

引用本文

导出引用
李瑛泽 邵志华 李思光. 组织器官透明化技术在三维成像研究中的应用[J]. 解剖学报. 2018, 49(3): 400-405 https://doi.org/10.16098/j.issn.0529-1356.2018.03.022
LI Ying-ze SHAO Zhi-hua LI Si-guang. Application of clearing methods on tissues in the three-dimensional imaging research[J]. Acta Anatomica Sinica. 2018, 49(3): 400-405 https://doi.org/10.16098/j.issn.0529-1356.2018.03.022

参考文献

[1]Richardson DS, Lichtman JW. Clarifying tissue clearing[J]. Cell, 2015, 162(2): 246-257.
[2]Micheva KD1, Smith SJ. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits[J]. Neuron, 2007, 55(1): 25-36.
[3]Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.
[4]Adams MW, Loftus AF, Dunn SE, et al. Light sheet fluorescence microscopy (LSFM) [J]. Curr Protoc Cytom, 2015, 71: 1-15.
[5]Erturk A, Becker K, Jahrling N,et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO[J]. Nat Protoc, 2012, 7(11): 1983-1995.
[6]Steinke H, Wolff W. A modified Spalteholz technique with preservation of the histology[J]. Ann Anat, 2001, 183(1): 91-95.
[7]Dodt HU, Leischner U, Schierloh A, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain[J]. Nat Methods, 2007, 4(4): 331-336.
[8]Kolesova H, Capek M, Radochova B, et al. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts[J]. Histochem Cell Biol, 2016, 146(2): 141-152.
[9]Parra SG, Chia TH, Zinter JP, et al. Multiphoton microscopy of cleared mouse organs[J]. J Biomed Opt, 2010, 15(3): 036017.
[10]Erturk A, Mauch CP, Hellal F, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury[J]. Nat Med, 2011, 18(1): 166-171.
[11]Renier N, Wu Z, Simon DJ, et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging[J]. Cell, 2014, 159(4): 896-910.
[12]Seo J, M Choe, Kim SY. Clearing and labeling techniques for large-scale biological tissues[J]. Mol Cells, 2016, 39(6): 439-446.
[13]Tsai PS, Kaufhold JP, Blinder P, et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels[J]. J Neurosci, 2009, 29(46): 14553-14570.
[14]Lin HH, Lai JS, Chin AL,et al. A map of olfactory representation in the drosophila mushroom body[J]. Cell, 2007, 128(6): 1205-1217.
[15]Chiang AS, Lin WY, Liu HP, et al. Insect NMDA receptors mediate juvenile hormone biosynthesis[J]. Proc Natl Acad Sci USA, 2002, 99(1): 37-42.
[16]Moy AJ, Capulong BV, Saager RB, et al. Optical properties of mouse brain tissue after optical clearing with FocusClear[J]. J Biomed Opt, 2015, 20(9): 95010.
[17]Kuwajima T, Sitko AA, Bhansali P, et al. ClearT: a detergent-and solvent-free clearing method for neuronal and non-neuronal tissue[J]. Development, 2013, 140(6): 1364-1368.
[18]Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction[J]. Nat Neurosci, 2013, 16(8): 1154-1161.
[19]Ke MT, Imai T. Optical clearing of fixed brain samples using SeeDB[J]. Curr Protoc Neurosci, 2014, 66: Unit 2.22.
[20]Ke MT, Nakai Y, Fujimoto S, et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent[J]. Cell Rep, 2016, 14(11): 2718-2732.
[21]Hou B, Zhang D, Zhao S, et al. Scalable and DiI-compatible optical clearance of the mammalian brain[J]. Front Neuroanat, 2015, 9: 19.
[22]Costantini I, Ghobril JP, Di Giovanna AP, et al. A versatile clearing agent for multi-modal brain imaging[J]. Sci Rep, 2015, 5: 9808.
[23]Hama H, Kurokawa H, Kawano H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain[J]. Nat Neurosci, 2011, 14(11): 1481-1488.
[24]Hama H, Hioki H, Namiki K, et al. ScaleS: an optical clearing palette for biological imaging[J]. Nat Neurosci, 2015, 18(10): 1518-1529.
[25]Susaki EA, Tainaka K, Perrin D, et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging[J]. Nat Protoc, 2015, 10(11): 1709-1727.
[26]Tainaka K, Kubota SI, Suyama TQ, et al. Whole-body imaging with single-cell resolution by tissue decolorization[J]. Cell, 2014, 159(4): 911-924.
[27]Fumoto S, Nishimura K, Nishida K, et al. Three-dimensional imaging of the intracellular fate of plasmid dna and transgene expression: zsgreen1 and tissue clearing method cubic are an optimal combination for multicolor deep imaging in murine tissues[J]. PLoS One, 2016, 11(1): e0148233.
[28]Tomer R, Ye L, Hsueh B, et al. Advanced CLARITY for rapid and high-resolution imaging of intact tissues[J]. Nat Protoc, 2014, 9(7): 1682-1697.
[29]Epp JR, Niibori Y, Liz Hsiang HL, et al. Optimization of CLARITY for clearing whole-brain and other intact organs(1,2,3) [J]. JoVE, 2015, 2(3):1-15.
[30]Yang B, Treweek JB, Kulkarni RP, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing[J]. Cell, 2014, 158(4): 945-958.
[31]Roberts DG, Johnsonbaugh HB, Spence RD, et al. Optical clearing of the mouse central nervous system using passive CLARITY[J]. J Vis Exp, 2016(112):1-9.
 [32] Lee E,Choi J,Jo Y,et al.ACT-PRESTO:rapid and consistent tissue clearing and labeling methpd for 3-dimensional (3D)imaging[J].Sci rep,2016,6:18631.

基金

国家自然科学基金;国家自然科学基金;国家自然科学基金

PDF(447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/