藤黄酸增强人胃癌SGC7901/DDP细胞对顺铂的敏感性

仝雷 王丽君 袁磊

解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 337-341.

PDF(338 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(338 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 337-341. DOI: 10.16098/j.issn.0529-1356.2018.03.011
肿瘤生物学

藤黄酸增强人胃癌SGC7901/DDP细胞对顺铂的敏感性

  • 仝雷1 王丽君2 袁磊3*
作者信息 +

Enhancing effect of gambogic acid on the sensibility of human gastric carcinoma SGC7901/DDP cells to cisplatin

  • TONG Lei1 WANG Li-jun2 YUAN Lei 3*
Author information +
文章历史 +

摘要

目的 探讨藤黄酸(GA)对人胃癌SGC7901/DDP细胞顺铂敏感性的影响及其分子机制。 方法 采用顺铂(DDP)浓度梯度递增法构建人胃癌顺铂耐药株SGC7901/DDP细胞,采用细胞计数盒-8(CCK-8)法检测藤黄酸和顺铂对SGC7901/DDP细胞的毒性作用,采用Chou-Talalay中效分析法定量评价藤黄酸和顺铂的联合作用效果,采用流式细胞术检测细胞凋亡,采用Western blotting方法检测Bcl-2、Bax、Survivin、多药耐药相关蛋白2(MRP2)、磷酸化氨基末端蛋白激酶(p-JNK)(Thr183/Tyr185)和JNK的蛋白水平。  结果 藤黄酸与顺铂各自单独作用48 h的IC50分别为2.94 μmmol/L和39.76 μmmol/L;当抑制率超过20%时,两者联合应用呈协同效应;藤黄酸可协同增强顺铂诱导的细胞凋亡(P<0.05),下调Survivin和MRP2蛋白水平(P<0.05),上调Bax蛋白水平(P<0.05),抑制JNK磷酸化(P<0.05);JNK特异性抑制剂SP600125可下调MRP2蛋白水平(P<0.05)。 结论 藤黄酸可增强人胃癌SGC7901/DDP细胞对顺铂的敏感性,这可能与藤黄酸通过抑制JNK信号通路下调MRP2蛋白表达,以及上调Bax蛋白表达和下调Survivin蛋白表达有关。

Abstract

Objective The aim of this study is to investigate the effect of gambogic acid (GA) on the sensibility of human gastric carcinoma SGC7901/DDP cells to cisplatin (DDP) and its possible mechanism. Methods The drug-resistant SGC7901/DDP cells were established by stepwise exposure to DDP. CCK-8 assay was employed to detect the cytotoxic effect of GA and DDP on SGC7901/DDP cells, and the combined effect of GA and DDP was analyzed by Chou-Talalay method . The cell apoptosis was studied by flow cytometry. Western blotting was performed to detect the protein levels of Bcl-2, Bax, Survivin, multidrug resistance-associated protein 2 (MRP2), phosphorylated c-Jun N-terminal kinase (p-JNK) (Thr183/Tyr185) and JNK. Results The IC50 values of GA and DDP were 2.94 μmol/L and 39.76 μmol/L after 48 hours treatment respectively, and the combined both drugs improved the antitumor effects on SGC7901/DDP cells. GA enhanced cisplatin-induced apoptosis (P<0.05), down-regulated Survivin and MRP2 and up-regulated Bax at the protein level (P<0.05), and inhibited phosphorylation of JNK in SGC7901/DDP cells (P<0.05). SP600125, a specific inhibitor of JNK, declined the protein level of MRP2 (P<0.05). Conclusion GA may enhance the sensibility of SGC7901/DDP cells to cisplatin by down-regulating MRP2 as a result of inactivation of the JNK signaling pathway, and up-regulating Bax and down-regulating Survivin.

关键词

藤黄酸 / 胃癌 / 顺铂 / 耐药性 / SGC7901/DDP细胞 / 免疫印迹法 /

Key words

Gambogic acid / Gastric carcinoma / Cisplatin / Drug resistance / SGC7901/DDP cell / Western blotting / Human

引用本文

导出引用
仝雷 王丽君 袁磊. 藤黄酸增强人胃癌SGC7901/DDP细胞对顺铂的敏感性[J]. 解剖学报. 2018, 49(3): 337-341 https://doi.org/10.16098/j.issn.0529-1356.2018.03.011
TONG Lei WANG Li-jun YUAN Lei. Enhancing effect of gambogic acid on the sensibility of human gastric carcinoma SGC7901/DDP cells to cisplatin[J]. Acta Anatomica Sinica. 2018, 49(3): 337-341 https://doi.org/10.16098/j.issn.0529-1356.2018.03.011

参考文献

[1]McLean MH, El-Omar EM. Genetics of gastric cancer[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(11):664-674.
[2]Kalni?a Z, Meistere I, Kikuste I, et al. Emerging blood-based biomarkers for detection of gastric cancer[J]. World J Gastroenterol, 2015, 21(41):11636-11653.
[3]Chen XL, Chen XZ, Yang C, et al. Docetaxel, cisplatin and fluorouracil (DCF) regimen compared with non-taxane-containing palliative chemotherapy for gastric carcinoma: a systematic review and meta-analysis[J]. PLoS One, 2013, 8(4):e60320.
[4]Kashyap D, Mondal R, Tuli HS, et al. Molecular targets of gambogic acid in cancer: recent trends and advancements[J]. Tumour Biol, 2016, 37(10):12915-12925.
[5]Wang LH, Li Y, Yang SN, et al. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling[J]. Br J Cancer, 2014, 110(2):341-352.
[6]Zhang W, Zhou H, Yu Y, et al. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression[J]. Onco Targets Ther, 2016, 9:3359-3368.
[7]Zhao W, Xia SQ, Zhuang JP, et al. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α[J]. Mol Cell Biochem, 2016, 420(1-2):1-8.
[8]Chen PM, Cheng YW, Wu TC, et al. MnSOD overexpression confers cisplatin resistance in lung adenocarcinoma via the NF-κB/Snail/Bcl-2 pathway[J]. Free Radic Biol Med, 2015, 79:127-137.
[9]Kim CW, Lu JN, Go SI, et al. p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax[J]. Int J Oncol, 2013, 43(5):1495-1502.
[10]Dong H, Liu G, Jiang B, et al. Overexpression of the Survivin gene in SGC7901 cell resistance to cisplatin[J]. Oncol Lett, 2014, 8(5):1953-1956.
[11]Cadoni E, Valletta E, Caddeo G, et al. Competitive reactions among glutathione, cisplatin and copper-phenanthroline complexes[J]. J Inorg Biochem, 2017, 173:126-133.
[12]Wortelboer HM, Balvers MG, Usta M, et al. Glutathione-dependent interaction of heavy metal compounds with multidrug resistance proteins MRP1 and MRP2[J]. Environ Toxicol Pharmacol, 2008, 26(1):102-108.
[13]Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2[J]. Am J Transl Res, 2017, 9(3):1127-1138.
[14]Chen YJ, Chen SY, Lovel R, et al. Enhancing chemosensitivity in oral squamous cell carcinoma by lentivirus vector-mediated RNA interference targeting EGFR and MRP2[J]. Oncol Lett, 2016, 12(3):2107-2114.
[15]Zhan M, Qu Q, Wang G, et al. Let-7c sensitizes acquired cisplatin-resistant A549 cells by targeting ABCC2 and Bcl-XL[J]. Pharmazie, 2013, 68(12):955-961.
[16]Zhang W, Zhou H 1, Yu Y, et al. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression[J]. Onco Targets Ther, 2016, 9:3359-3368.
[17]Lin YT, Liu YC, Chao CC. Inhibition of JNK and prothymosin-alpha sensitizes hepatocellular carcinoma cells to cisplatin[J]. Biochem Pharmacol, 2016, 122:80-89.
[18]Seino M, Okada M, Sakaki H, et al. Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel[J]. Oncol Rep, 2016, 35(1):593-601.
[19]Lo Iacono M, Monica V, Vavalà T, et al. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway[J]. Int J Cancer, 2015, 136(11):2598-2609.
[20]Liu Y, Chen X, Gu Y. FOXM1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and mediates sensitivity to cisplatin in A549 cells via the JNK/mitochondrial pathway[J]. Neoplasma, 2015, 62(1):61-71.

基金

河南省科技厅科技发展计划项目

PDF(338 KB)

Accesses

Citation

Detail

段落导航
相关文章

/