树鼩2型糖尿病加剧缺血性脑损伤的可能机制

赵玲 李树清

解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 273-280.

欢迎访问《解剖学报》官方网站!今天是 English
解剖学报 ›› 2018, Vol. 49 ›› Issue (3) : 273-280. DOI: 10.16098/j.issn.0529-1356.2018.03.001
神经生物学

树鼩2型糖尿病加剧缺血性脑损伤的可能机制

  • 赵玲1 李树清2
作者信息 +

Mechanism of metabolic disorders aggravated ischemic brain injury in tree shrews of type 2-diabetes mellitus

  • ZHAO Ling1 LI Shu-qing 2*
Author information +
文章历史 +

摘要

目的 建立树鼩2型糖尿病(T2DM)合并脑缺血模型,探讨代谢异常加剧缺血性脑损伤的可能机制。 方法 将36只健康成年树鼩随机分为4组,即对照组、脑缺血组、T2DM组及T2DM +脑缺血组(每组n=9)。采用高脂饲养联合链脲佐菌素(STZ)注射建立实验性糖尿病模型,通过光化学反应诱导树鼩局部血栓形成,以临床症状最突出的缺血后24 h作为观察的时间点,通过血清生化指标的检测了解机体代谢状态,采用2,3,5-氯化三苯基甲氮唑(TTC)、HE染色及透射电子显微镜观察超微结构对缺血性脑损伤进行评价。 结果 树鼩T2DM和T2DM合并脑缺血组树鼩的体重有所降低[(120.29±13.82) g],但差异无统计学意义,而血糖(FBG)、总胆固醇(TC)、低密度脂蛋白固醇(LDL-C)及甘油三酯(TG)明显升高,分别为(26.75±10.60)mmol/L、(7.40±3.26) mmol/L、(2.93±0.70)mmol/L、(1.93±0.63)mmol/L(P<0.05)和(32.29±6.08)mmol/L(7.80±3.41) mmol/L、(3.06±0.95)mmol/L和(1.73±0.29)mmol/L,(P<0.01); 血清C-反应蛋白(CRP)水平明显升高[(1.43±0.53)mg/L,P<0.01]。糖尿病树鼩合并脑缺血时上述指标的改变更为明显,神经元受损及脑梗死面积明显增加[(19.56±1.25)%,P<0.01]。结论 T2DM树鼩代谢异常可加剧缺血性脑损伤,其机制可能与高血糖及CRP协同作用引起的炎症反应有关。

Abstract

Objective To explore the mechanism of metabolic abnormality or without exacerbating ischemic brain injury by establishing tree shrew models with type 2 Diabetes mellitus (T2DM), combined with the cerebral ischemia or not. Methods Thirty-six tree shrews were randomly devided into 4 groups: control, ischemia, T2DM and T2DM combined with cerebral ischemia groups. The experimental diabetes model was established by the use of high lipid breeding combined with streptozocin (STZ) injection in tree shrews. The local cerebral thrombosis was induced by photochemical reaction in tree shrews. The metabolic status of the body was measured by serum biochemical markers. 2,3,5-triphenyl tetrazolium chloride(TTC) staining, HE staining and trunsmission electron microscopy were used to observe the changes of the body’s metabolic status at hour 24 after the most prominent clinical manifestations. Results The body weight of tree shrews in the T2DM and T2DM combined with cerebral ischemia groups was decreased (120.29±13.82)g, but there was no statistical difference(P>0.05). Fasting blood glucose (FBG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) were significantly higher, and their values were (26.75 ± 10.60)mmol/L,(7.40 ± 3.26) mmol/L,(2.93±0.70)mmol/L,(1.93±0.63)mmol/L, respectively(P<0.05) in T2DM group, and (32.29±6.08) mmol/L, (7.80 ± 3.41) mmol/L, (3.06 ± 0.95) mmol/L and (1.73 ± 0.29) mmol/L, respectively(P<0.01) in T2DM combined with cerebral ischemia group. Serum C-reactive protein (CRP) level was obviously increased (1.43± 0.53) mg/L(P<0.01). The changes of the above indicators were more obvious when T2DM was combined with cerebral ischemia and the neurons were damaged and the area of cerebral infarction was significantly increased (19.56 ±1.25) % (P<0.01). Conclusion The metabolic abnormality of T2DM tree shrews can aggravate ischemic brain injury, and its mechanism may be related to the inflammatory response caused by the synergistic effect of CRP.

关键词

光化学 / 脑缺血 / 2型糖尿病 / 代谢紊乱 / C-反应蛋白 / 透射电子显微术 / 树鼩

Key words

Photochemistry / Cerebral ischemia / Type 2 diabetes mellitus / Metabolic disorder / C-reactive protein / Transmission electron microscopy / Tree shrew

引用本文

导出引用
赵玲 李树清. 树鼩2型糖尿病加剧缺血性脑损伤的可能机制[J]. 解剖学报. 2018, 49(3): 273-280 https://doi.org/10.16098/j.issn.0529-1356.2018.03.001
ZHAO Ling LI Shu-qing. Mechanism of metabolic disorders aggravated ischemic brain injury in tree shrews of type 2-diabetes mellitus[J]. Acta Anatomica Sinica. 2018, 49(3): 273-280 https://doi.org/10.16098/j.issn.0529-1356.2018.03.001

参考文献

[1]Spencer EA, Pirie KL, Stevens RJ. Diabetes and modifiable risk factors for cardiovascular disease:the prospective million women study[J]. Eur J Epidemiol,2008,23(12):793-799. 
[2]Fox CS, Coady S, Sorlie PD, et al. Increasing cardiovascular disease burden due to diabetes mellitus: the framingham heart study[J]. Circulation, 2007,115(12):1544-1550.
[3]Wang B, Aw TY, Stokes KY. The protection conferred against ischemia-reperfusion injury in the diabetic brain by N-acetylcysteine is associated with decreased icarbonyl stress[J]. Free Radic Biol Med, 2016,96:89-98.
[4]Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes[J]. N Eng J Med,2008, 358(24): 2560-2572.
[5]Altintas O, Kumas M, Altintas MO. Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic ratsthe expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats[J]. Peptides, 2016,79:31-38.
[6]Biessels GJ, Strachan MW, Visseren FL, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions[J]. Lancet Diabetes Endocrinol, 2014,2(3):246-255.
[7]Prakash R, Li W, Qu Z, et al. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery[J]. Stroke,2013, 44 (10):2875-2882. 
[8]Zhang ChR,Yu ZhCh, Li ShQ. Mechanism of ischemic postconditioning relieved brain edema and cerebral infarction after cerebral ischemia in tree shrews[J]. Acta Anatomica Sinica, 2017,48(2):135-141. (in Chinese)
张川荛,俞志成,李树清. 缺血后适应减轻树鼩缺血性脑水肿及脑梗死的机制[J]. 解剖学报,2017,48(2):135-141. 
[9]La Torre FR, RodriguezBaeza A, Sahuquillo-Barris J. Morphological characteristics and distribution pattern of the arterial vessels in human cerebral cortex: a scanning electron microscope study[J]. Anat Rec, 1998,251(1): 87-96.
[10]Li ShQ, LI F, He L, et al. Ischemia postconditioning induced tight junction protein expression and inhibits brain edema after thrombatic cerebral ischemia in tree shrews[J]. Chinese Journal of Pathophysiology,2016,32(3):477-484. (in Chinese)
李树清,李凡,何亮,等.缺血后适应促进树鼩血栓性脑缺血时紧密连接(occludin/ ZO-1)蛋白表达及抑制脑水肿的机制[J].中国病理生理杂志,2016, 32(3): 477-484.
[11]Coskun O, Kanter M, Korkmaz A, et al. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and -cell damage in rat pancreas[J]. Pharmacol Res,2005,51(12):117-123.
[12]Guldiken B, Demir M, Guldiken S, et al. N. Oxidative stress and total antioxidant capacity in diabetic and nondiabetic acute ischemic stroke patients[J].Clin Appl Thromb Hemost, 2009,15 (6):695-700.
[13]Rehni AK, Nautiyal N, Perez-Pinzon MA,et al. Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics[J]. Metab Brain Dis,2015, 30(2):437-447.
[14]Calo L, Dong Y, Kumar R, et al. Mitochondrial dynamics: an emerging paradigm in ischemiareperfusion injury[J]. Curr Pharm,2013, 19(39):6848-6857. 
[15]Liu Q, Zhou S, Wang Y,et al. A feasible strategy for focal cerebral ischemia-reperfusion injury: remote ischemic postconditioning[J]. Neural Regen Res, 2014, 9(15): 1460-1463.
[16]Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes[J]. N Eng J Med, 2008, 358(24): 2560-2572.[17]Mark WM, Margaret MW, Eugene BC. Roles of OZ-1,occuldin and actin in oxidant induced barrier disruption[J]. Am J Phsiol Gastrointest Liver Physiol,2002,290(2):222-231.
[18]Kong XY, Kong W, Miao GX, et al. Scutellaria baicalensis stem leaf flavonoids exerts protective effects on ischemia reperfusion injury of microvessel and brain blood barrier in cerebral hippocampus[J].Acta Anatomica Sinica,2014,45(6):773-778.(in Chinese)
孔祥玉,孔维,苗光新,等.黄芩茎叶总黄酮对大鼠大脑海马区微血管和血脑屏障缺血再灌注损伤的预防作用[J].解剖学报,2014, 45(6): 773-778 
[19]Shang XY, Lin XJ, Manorek G,et al.Claudin-3 and claudin-4 regulate sensitivity to cisplatin by controlling expression of the Copper and cisplatin influx transporter CTR1[J].Mol Pharmacol,2013,83(1):85-94.
[20]Breckwoldt MO, Chen JW, Stangenberg L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase[J]. Proc Natl Acad Sci USA, 2008, 105(47):18584-18589. 
[21]Kriz J, Lalancette-Hébert M. Inflammation, plasticity and real-time imaging after cerebral ischemia[J]. Acta Neuropathol, 2009, 117(5):497-509.
[22]Li W, Maloney RE, Aw TY. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature[J]. Redox Biol, 2015, 5:80-90.
[23]Zhang Z, Yan J, Taheri S, et al. Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke[J]. Free Radic Biol Med, 2014,68:8-21.
[24]Feng R,Li SQ,Li F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning 6 in hippocampus of tree shrews to thrombotic cerebral ischemia[J]. Brain Res, 2011,1384:118-127. 
[25]Liu MX, Sun YCh, Hou LN, et al.Regulatory effects of sericin on pancreatic insulin PI3K/Akt signaling pathway in type 2 diabetic rats[J]. Acta Anatomica Sinica,2016,47(6):807-811.(in Chinese)
刘美晓,孙一婵,侯丽娜,等.丝胶对2型糖尿病大鼠胰腺胰岛素PI3K-Akt信号通路的调节作用[J]. 解剖学报,2016, 47(6): 807-811. 

基金

国家科技支撑计划;国家自然科学基金面上项目

Accesses

Citation

Detail

段落导航
相关文章

/