淀粉样蛋白前体/早老素1转基因小鼠大脑皮质内kinesin1介导的神经元轴浆运输障碍

王倩 范文娟 孙仪征 王来 邓锦波

解剖学报 ›› 2018, Vol. 49 ›› Issue (2) : 158-165.

PDF(1459 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1459 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (2) : 158-165. DOI: 10.16098/j.issn.0529-1356.2018.02.004
神经生物学

淀粉样蛋白前体/早老素1转基因小鼠大脑皮质内kinesin1介导的神经元轴浆运输障碍

  • 王倩1 范文娟1,2 孙仪征1 王来1 邓锦波1*
作者信息 +

Kinesin1-mediated neuronal axoplasmic transport disorder in cerebral cortex of amyloid precursor protein/presenilin-1 transgenic mice

  • WANG Qian1 FAN Wen-juan 1,2 SUN Yi-zheng1 WANG Lai1 DENG Jin-bo 1*
Author information +
文章历史 +

摘要

目的 探讨轴突运输蛋白,kinesin1和神经丝蛋白(SIM-312)在阿尔茨海默病(AD)发生、发展中的作用。 方法 出生后30~360 d淀粉样蛋白前体(APP)/早老素1(PS1)转基因小鼠(n=40)和野生型小鼠(n=40)用于此研究,利用免疫荧光染色和Western blotting技术检测上述两种小鼠大脑皮层内老年斑的沉积及星形胶质细胞的分布以及在大脑皮质发育过程中kinesin1和SIM-312阳性细胞个数及蛋白的表达变化。 结果 APP/PS1转基因小鼠与正常对照组相比,β-淀粉样蛋白(Aβ)斑块增多,星形胶质细胞数目增多,神经元减少;而kinesin1阳性细胞的数量在APP/PS1转基因小鼠生长发育过程中减少,且在出生9月(P9M)之后与野生型小鼠之间差异存在着显著性 (P<0.05);SIM-312标记的神经丝蛋白随着年龄的增长自P6M之后开始出现缠结现象。 结论 Kinesin1和SIM-312的异常改变导致神经元中轴浆运输障碍以及AD的病理变化。

Abstract

Objective To understand the roles of axonal transport proteins, kinesin1 and SIM-312, in the pathogenesis and development of Alzheimer’s disease. Methods Amyloid precursor protein(APP)/ presenilin-1(PS1)transgenic mice (n=40) and wild type mice (n=40) from postnatal day 30 to postnatal day 360 were used in the study. Amyloid beta-peptides(Aβ)plaques and astrocytes in cerebral cortex were visualized with immunofluorescent labeling and Western blotting. Results Compared with wild type mice, Aβ plaques and astrocytes increased in cerebral cortex of APP/PS1 mutant mice, especially after 9 months, with statistical significance. However, after 9 months, the number of kinesin1-positive cells decreased in APP/PS1 transgenic mice, and SIM-312 positive neurofilaments appeared tangled in the cerebral cortex of AD mice as well. Conclusion Abnormal kinesin1 and SIM-312 are involved in axonal transportation disorder in AD mice, suggesting they are the important pathogenic factors of AD.

关键词

阿尔茨海默病 / 轴浆运输障碍 / 神经丝蛋白 / Kinesin1 / 免疫印迹法 / 小鼠

Key words

Alzheimer's disease / Axial transport barrier / Neurofilament / Kinesin1 / Western blotting / Mouse

引用本文

导出引用
王倩 范文娟 孙仪征 王来 邓锦波. 淀粉样蛋白前体/早老素1转基因小鼠大脑皮质内kinesin1介导的神经元轴浆运输障碍[J]. 解剖学报. 2018, 49(2): 158-165 https://doi.org/10.16098/j.issn.0529-1356.2018.02.004
WANG Qian FAN Wen-juan SUN Yi-zheng WANG Lai DENG Jin-bo.
Kinesin1-mediated neuronal axoplasmic transport disorder in cerebral cortex of amyloid precursor protein/presenilin-1 transgenic mice
[J]. Acta Anatomica Sinica. 2018, 49(2): 158-165 https://doi.org/10.16098/j.issn.0529-1356.2018.02.004

参考文献

[1]Colom LV, Perry G, Kuljis RO. Tackling the elusive challenges relevant to conquering the 100-plus year old problem of Alzheimer’sdisease [J]. Curr Alzheimer Res, 2013, 10(1): 108-116.
 [2]Tam JH, Pasternak SH. Amyloid and Alzheimer’s disease: inside and out [J]. Can J Neurol Sci, 2012,39(3):286-298.
 [3]Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes [J]. Acta Neuropathol, 1991, 82(4): 239-259.
 [4]Kamal A, Stokin GB, Yang Z, et al. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesinI [J]. Neuron, 2000, 28(2): 449-459.
 [5]Yuan A, Hassinger L, Rao MV, et al. Dissociation of axonal neurofilament content from its transport rate [J]. PLoS One, 2015, 10(7): e0133848.
 [6]Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease [J]. Science, 2005, 307(5713): 1282-1288.
 [7]Lu JP, Huang JX, Ding MB. Axonal transport and toxic peripheral neuropathy [J]. International Journal of Medical Hygiene, 1996, (5): 3-6.(in Chinese)
鲁洁波, 黄金祥, 丁茂柏. 轴浆运输与中毒性周围神经病 [J]. 国外医学卫生学分册, 1996, (5): 3-6. 
 [8]Kamal A, Almenar-Queralt A, Leblanc JF, et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP [J]. Nature, 2001, 414(6864): 643-648.
 [9]Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease [J]. J Neurochem, 1995, 65(4): 1431-1444.
 [10]Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease [J]. Trends Cell Biol, 1998, 8(11): 447-453.
 [11]Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion [J]. Proc Natl Acad Sci USA, 1999, 96(20): 11049-11053.
 [12]Caballero Oteyza A, Battaloglu E, Ocek L, et al. Motor protein mutations cause a new form of hereditary spastic paraplegia [J]. Neurology, 2014, 82(22): 2007-2016.
 [13]Reid E, Kloos M, Ashley-Koch A, et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10) [J]. Am J Hum Genet, 2002, 71(5): 1189-1194.
 [14]Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta [J]. Cell, 2001, 105(5): 587-597.
 [15]Chevalier-Larsen E, Holzbaur EL. Axonal transport and neurodegenerative disease [J]. Biochim Biophys Acta, 2006, 1762(11-12): 1094-1108.
 [16]Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease [J]. J Neurobiol, 2004, 58(2): 258-271.
 [17]Mattson AE, Bharadwaj AR, Zuhl AM, et al. Thiazolium-catalyzed additions of acylsilanes: a general strategy for acyl anion addition reactions [J]. J Org Chem, 2006, 71(15): 5715-5724.
 [18]Ghiretti AE, Thies E, Tokito MK, et al. Activity-dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B [J]. Neuron, 2016, 92(4): 857-872. 
 [19]Morfini GA, Burns M, Binder LI, et al. Axonal transport defects in neurodegenerative diseases [J]. J Neurosci, 2009, 29(41): 12776-12786.
 [20]Liu Q, Xie F, Siedlak SL, et al. Neurofilament proteins in neurodegenerative diseases [J]. Cell Mol Life Sci, 2004, 61(24): 3057-3075.
 [21]Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss [J]. J Neurol Sci, 2005, 233(1-2): 183-198.
 [22]Jung C, Yabe JT, Shea TB. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity [J]. Brain Res, 2000, 856(1-2): 12-19.
 [23]Lewis SE, Nixon RA. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments [J]. J Cell Biol, 1988, 107(6 Pt 2): 2689-2701.
 [24]Shea TB, Yabe JT, Ortiz D, et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons [J]. J Cell Sci, 2004, 117(Pt 6): 933-941.
 [25]Yabe JT, Chan WK, Chylinski TM, et al. The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation [J]. Cell Motil Cytoskeleton, 2001, 48(1): 61-83.
 [26]Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis [J]. J Neuroimmunol, 1987, 14(2): 149-160.
 [27]Gong CX, Wang JZ, Iqbal K, et al. Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices [J]. Neurosci Lett, 2003, 340(2): 107-110.
 [28]Aira Z, Barrenetxea T, Buesa I, et al. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889 [J]. Neurosci Lett, 2016, 618:152-158.
 [29]De Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells [J]. Cell, 1992, 68(3): 451-463.
 [30]Nakagawa T, Chen J, Zhang Z, et al. Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments [J]. J Cell Biol, 1995, 129(2): 411-429.
 [31]Nixon RA, Paskevich PA, Sihag R K, et al. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber [J]. J Cell Biol, 1994, 126(4): 1031-1046.
 [32]Sihag RK, Inagaki M, Yamaguchi T, et al. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments [J]. Exp Cell Res, 2007, 313(10): 2098-2109.

基金

河南省教育厅科学技术研究重点项目

PDF(1459 KB)

Accesses

Citation

Detail

段落导航
相关文章

/