转铁蛋白受体1对淀粉样蛋白前体/早老素1转基因小鼠神经元的保护作用

王倩 范文娟 孙仪征 王来 程艳红 邓锦波

解剖学报 ›› 2018, Vol. 49 ›› Issue (1) : 20-28.

PDF(976 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(976 KB)
解剖学报 ›› 2018, Vol. 49 ›› Issue (1) : 20-28. DOI: 10.16098/j.issn.0529-1356.2018.01.004
神经生物学

转铁蛋白受体1对淀粉样蛋白前体/早老素1转基因小鼠神经元的保护作用

  • 王倩1 范文娟1,2 孙仪征1 王来1 程艳红1 邓锦波1*
作者信息 +

Transferrin receptor 1’s neuroprotection in amyloid precusor protein/presenilin-1 transgenic mice

  • WANG Qian1 FAN Wen-juan 1,2 SUN Yi-zheng1 WANG Lai1 CHENG Yan-hong1 DENG Jin-bo 1*
Author information +
文章历史 +

摘要

目的 探讨转铁蛋白受体1(TfR1)在淀粉样蛋白前体(APP)/早老素1(PS1)转基因小鼠脑内异常表达情况及其对阿尔茨海默病(AD)神经元的保护作用。方法 首先,利用免疫荧光及Western blotting技术检测出生后1月(P1M)至P12M各发育时间点,APP/PS1转基因小鼠与野生型小鼠大脑TfR1的表达情况;其次,取APP/PS1转基因与野生型新生小鼠原代海马神经元培养,培养12 d后利用TfR1 shRNA质粒干扰TfR1基因的表达,利用Western blotting技术检测干扰后细胞TfR1的表达变化;ELISA技术检测TfR1干扰前后细胞β-淀粉样蛋白(Aβ)1-42的分泌量;利用微管相关蛋白2(MAP2)标记神经元突起,观察TfR1干扰前、后神经元突起的生长变化;最后,利用FM1-43染色观察由TfR1介导的轴质运输中囊泡的运输情况。 结果 在APP/PS1转基因小鼠生长发育过程中,随着年龄的增长TfR1的表达呈现先增加后减少的趋势,在P6M之后明显降低,且与对照组相比差异有显著性;TfR1 shRNA 干扰后可以使原代神经元细胞内TfR1基因沉默,使其突起明显变细、变长并影响囊泡的运输。与对照组相比,TfR1基因在APP/PS1转基因小鼠原代神经元中表达量减少,荧光减弱。 结论 APP、PS1基因突变可导致TfR1的表达下降;APP/PS1转基因小鼠原代神经元经TfR1 shRNA干扰Aβ1-42分泌量增多,影响神经元突起的生长,使轴质运输速率减慢,囊泡的活动减缓,加重AD病情。故TfR1的表达可以对神经元起到保护作用。

Abstract

Objective To investigate the neuroprotection effect of transferrin receptor 1(TfR1) in Alzheimer’s disease(AD). Methods Immunofluorescence and Western blotting were used to detect the expression of TfR1 in the amyloid precursor protein(APP)/presenilin-1(PS1)transgenic mice from postnatal 0 day(P0) to P360. With primary cultured hippocampal neurons, TfR1 expression and amyloid betapeptides (Aβ) secretion were detected with Western blotting and ELISA assay, respectively. The cultured neurons and their processes were labeled with TfR1 and microtubule associated protein 2 (MAP2) immunolabeling, and the TfR1-mediated axonal vesicles were observed with FM1-43 staining, after TfR1 shRNA interference. Results TfR1 expression in AD mice (APP/PS1 transgenic mice) decreased significantly after postnatal 6 months (P 6 M) compared with the wild type(WT) mice. Similarly, in cultured cells, after TfR1 gene silence, the neuronal processes became long and thin, and the axonal vesicle transportation was blocked. Conclusion APP and PS1 gene mutation can decrease expression of TfR1. TfR1 shRNA interference can increase the amount of Aβ1-42 secretion and impact neurite growth and axonal vesicle transportation. Therefore, we conclude that TfR1 may play an important role in neuroprotection.

关键词

转铁蛋白受体1 / 转染 / 干扰 / 原代神经元 / 囊泡运输 / 树突 / 免疫印迹法 / 小鼠

Key words

Transferrin receptor 1 / Transfection / Interference / Primary neuron / Vesicular transport / Dendrite / Western blotting / Mouse

引用本文

导出引用
王倩 范文娟 孙仪征 王来 程艳红 邓锦波. 转铁蛋白受体1对淀粉样蛋白前体/早老素1转基因小鼠神经元的保护作用[J]. 解剖学报. 2018, 49(1): 20-28 https://doi.org/10.16098/j.issn.0529-1356.2018.01.004
WANG Qian FAN Wen-juan SUN Yi-zheng WANG Lai CHENG Yan-hong DENG Jin-bo. Transferrin receptor 1’s neuroprotection in amyloid precusor protein/presenilin-1 transgenic mice[J]. Acta Anatomica Sinica. 2018, 49(1): 20-28 https://doi.org/10.16098/j.issn.0529-1356.2018.01.004
中图分类号: R329   

参考文献

[1]Fleming RE, Migas MC, Holden CC, et al. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis [J]. Proc Natl Acad Sci US A, 2000, 97(5): 2214-2219.
[2]Ham D, Schipper HM. Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides [J]. Cell Mol Biol, 2000, 46(3): 587-596.
[3]Qian ZM, Tang PL. Mechanisms of iron uptake by mammalian cells [J]. Biochim Biophys Acta, 1995, 1269(3): 205-214.
[4]Du Y, Feng YM, Qian ZhM. Intracerebral iron, transferrin and transferrin receptor [J]. Progress in Physiological Sciences, 1999, (4): 337-340.(in Chinese)
杜宇, 冯佑民, 钱忠明. 脑内的铁、转铁蛋白及转铁蛋白受体 [J]. 生理科学进展, 1999, (4): 337-340. 
[5]Gadkar K, Yadav DB, Zuchero JY, et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain [J]. Eur J Pharm Biopharm, 2016, 101:53-61.
[6]Granseth B, Odermatt B, Royle SJ, et al. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses [J]. Neuron, 2006, 51(6): 773-786.
[7]Park M, Salgado JM, Ostroff  L, et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes [J]. Neuron, 2006, 52(5): 817-830.
[8]Wang FG, Fan WJ. Effect of transferrin receptor 1 on the growth and differentiation of mouse hippocampal neurons[J]. Acta Anatomica Sinica, 2017,48(4):397-403.(in Chinese)
王丰刚,范文娟. 转铁蛋白受体1对小鼠海马神经元生长与分化的影响[J].解剖学报,2017,48(4):397-403.
[9]Pinero DJ, Hu J, Connor JR. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains [J]. Cell Mol Biol, 2000, 46(4): 761-776.
[10]Kamal A, Almenar-Queralt A, Leblanc JF, et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP [J]. Nature, 2001, 414(6864): 643-648.
[11]Vagnoni A, Bullock SL. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing [J]. Nature Protoc, 2016, 11(9): 1711-1723.
[12]Gunawardena S, Goldstein LS. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila [J]. Neuron, 2001, 32(3): 389-401.
[13]Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease [J]. J Neurobiol, 2004, 58(2): 258-271.
[14]Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau [J]. Proc Natl Acad Sci USA, 1998, 95(16): 9637-9641.
[15]Richardson DR, Kalinowski DS, Lau S, et al. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents [J]. Biochim Biophys Acta, 2009, 1790(7): 702-717.
[16]Anderson CP, Shen M, Eisenstein RS, et al. Mammalian iron metabolism and its control by iron regulatory proteins [J]. Biochim  Biophys Acta, 2012, 1823(9): 1468-1483.
[17]Sage PT, RonHarel N, Juneja VR, et al. Suppression by TFR cells leads to durable and selective inhibition of B cell effector function [J]. Nat  Immunol, 2016, 17(12): 1436-1446.
[18]Smith MA, Harris PL, Sayre LM, et al. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals [J]. Proc  Natl Acad Sci  USA, 1997, 94(18): 9866-9868.
[19]Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment [J]. J Alzheimers Dis, 2010, 19(1): 363-372.
[20]Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron [J]. J Biol Chem, 2005, 280(22): 20978-20986.
[21]Nakamura Y, Nakamichi N, Takarada T, et al. Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells [J]. Neurochem Int, 2012, 60(5): 448-457.
[22]Liao QK, Xiao M. Transferrin and transferrin receptors [J]. International Journal of Blood Transfusion and Hematology, 1988, (2): 106-109.(in Chinese)
廖清奎, 肖芒. 转铁蛋白和转铁蛋白受体的作用 [J]. 国外医学输血及血液学分册, 1988,(2): 106-109. 
[23]Deng JB, Li MSh, Wu P, et al. FM1-43 labeled functional synaptic vesicle technology [J]. Chinese Journal of Anatomy, 2007, 38(2): 250-252.(in Chinese)
邓锦波, 李明善, 吴萍, 等. FM1-43标记功能性突触小泡技术 [J]. 解剖学杂志, 2007, 38(2): 250-252. 
[24]Zhou HM, Lei N, Lu YP. Advances in glycine neurotransmitters [J]. Journal of Biology, 2011, 28(01): 79-81.(in Chinese)
周鸿铭, 雷娜, 鲁亚平. 甘氨酸神经递质研究进展 [J]. 生物学杂志, 2011, 28(01): 79-81. 

基金

河南省教育厅科学技术研究重点项目

PDF(976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/