Reelin在小鼠穿通纤维及大脑连合纤维寻径中的作用

王晨阳 王强 李瑞萍 孙仪征 石贞玉 邓锦波

解剖学报 ›› 2017, Vol. 48 ›› Issue (5) : 511-519.

PDF(1039 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1039 KB)
解剖学报 ›› 2017, Vol. 48 ›› Issue (5) : 511-519. DOI: 10.16098/j.issn.0529-1356.2017.05.003
神经生物学

Reelin在小鼠穿通纤维及大脑连合纤维寻径中的作用

  • 王晨阳 王强 李瑞萍 孙仪征 石贞玉* 邓锦波*
作者信息 +

Reelin’s roles in the pathfinding of perforant fibers and commissural fibers in mice

  • WANG Chen-yang WANG Qiang LI Rui-ping SUN Yi-zheng SHI Zhen-yu* DENG Jin-bo*
Author information +
文章历史 +

摘要

目的 通过对比野生型小鼠和Reeler小鼠穿通通路及连合纤维的发育,探讨Reelin在穿通通路及连合纤维寻径中的作用。 方法 共取野生型小鼠(WT)和Reelin基因缺失小鼠(Reeler),从胚龄16 d(E16)至出生7 d(P7)各年龄点,共123例。采用DiI/DiO离体示踪技术对不同年龄点的WT小鼠及Reeler小鼠的穿通通路及连合纤维进行顺行和逆行示踪。 结果 1.穿通通路主要由内嗅皮质第Ⅱ层和第Ⅳ层神经元所发出,在E16时进入海马腔隙分子层,P1时穿通纤维出现在齿状回,P7时穿通纤维形成致密纤维束终止于齿状回外分子层2/3;Reeler小鼠的穿通通路出现明显的发育延迟并且投射纤维分布紊乱;2.穹隆连合纤维主要由海马CA3锥体细胞,门细胞及内嗅皮质Ⅱ~Ⅳ层神经元发出,在E16时形成;Reeler小鼠穹隆纤维与WT小鼠在发育中无明显区别;3.胼胝体连合纤维主要由新皮质Ⅱ~Ⅳ层神经元及纹状体神经元所投射,在E18时形成并向对侧皮质进行纤维投射,并且投射部位出现对称分布,P3时一侧胼胝体纤维到达对侧纹状体。Reeler小鼠胼胝体投射的皮质神经元向对侧新皮质投射出现延迟。 结论 Reelin可能是穿通通路及连合纤维发育的导向因子。Reelin的缺失导致穿通通路发育延迟,并且连合纤维在皮质的细胞来源及穿通通路细胞来源紊乱。

Abstract

Objective To understand Reelin’s roles in the pathfinding of perforant fibers and commissural fibers between wild-type (WT) and Reeler mice. Methods A total of 123 WT mice and Reeler mice from embryonic day 16 (E16) to postnatal day 7 (P7) were used for this study. The perforant fibers and commissural fibers were labeled with DiI and DiO tracing (anterograde and retrograde). Results 1. Perforant fibers were mainly projected from the neurons in the layers Ⅱ to Ⅳ of entorhinal cortex. They entered the stratum lacunosum-molecular layer in hippocampus proper as early as E16, while the perforant fibers reached the dentate gyrus (DG) at P1. The perforant fibers terminated in the outer two thirds of the molecular layer of the dentate gyrus at P7. Compared with WT mice, the perforant fibers in Reeler mice developed retardantly and distributed in disorder. 2. Fornix commissural fibers rose from the pyramidal cells of the CA3, hilus neurons and the Ⅱ-Ⅳ layers neurons of the entorhinal cortex at E16. Compared with WT mice, Reeler mice almost had no significant difference in the development of fornix fiber. 3. Corpus callosum was mainly projected from the neurons of layersⅡ-Ⅳ of neocortex and corpus striatum, which started to project toward contralateral cortex at E18 and reached the contralateral striatum at P3. However, the corpus callosum fibers of Reeler mice entered to the contralateral neocortex later than in WT mice. Conclusion Reelin may serve as a guiding cue for the development of perforant pathway and commissural fibers. Without Reelin, the commissural and perforant pathways develop retardantly, and their original neurons in cortical plate are in disorder.

关键词

Reelin / 穿通通路 / 连合纤维 / 发育 / Nissl染色 / 小鼠

Key words

Reelin / Perforant pathway / Commissural fibers / Development / Nissl staining / Mouse

引用本文

导出引用
王晨阳 王强 李瑞萍 孙仪征 石贞玉 邓锦波. Reelin在小鼠穿通纤维及大脑连合纤维寻径中的作用[J]. 解剖学报. 2017, 48(5): 511-519 https://doi.org/10.16098/j.issn.0529-1356.2017.05.003
WANG Chen-yang WANG Qiang LI Rui-ping SUN Yi-zheng SHI Zhen-yu DENG Jin-bo. Reelin’s roles in the pathfinding of perforant fibers and commissural fibers in mice[J]. Acta Anatomica Sinica. 2017, 48(5): 511-519 https://doi.org/10.16098/j.issn.0529-1356.2017.05.003

参考文献

[1]Zhao S, Frotscher M. Go or stop? Divergent roles of Reelin in radial neuronal migration [J]. Neurosci, 2010, 16(4): 421-434.
[2] Weiss KH, Johanssen C, Tielsch A, et al. Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLRdeficient mice [J]. J Comp Neurol, 2003, 460(1): 56-65.
[3] Luque JM, MoranteOria J, Fairen A. Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development [J]. Brain Res Dev Brain Res, 2003, 140(2): 195-203.
[4] Wu P, Li MS, Yu DM, et al. Reelin, a guidance signal for the regeneration of the entorhino-hippocampal path [J]. Brain Res, 2008, 1208:1-7.
[5] Dulabon L, Olson EC, Taglienti MG, et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration [J]. Neuron, 2000, 27(1): 33-44.
[6] Shi ShQ, Cui ZhJ, Yan MCh, et al. Morphological study of Reelin regulation on the development of rostral migratory stream in the mouse [J]. Acta Aantomica Sinica, 2015, 46 (4): 433-442.(in Chinese)
时书勤, 崔占军, 鄢明超,等. Reelin调节小鼠喙端迁移流发育的形态学观察 [J]. 解剖学报, 2015, 46(4): 433-442.
[7] Wu P, Deng TX, Zhao HJ,et al. Origins and development of corpus callosum and fomix commissures in mice [J]. Chinese Journal of Anatomy, 2004, 148(1): 89-96. (in Chinese)吴萍, 邓同兴, 赵慧杰, 等. 胼胝体与穹窿连合纤维的来源与发育 [J]. 解剖学杂志, 2011, 34(1): 89-96.
[8] Misaki K, Kikkawa S, Terashima T. Reelin-expressing neurons in the anterior commissure and corpus callosum of the rat [J]. Brain Res Dev Brain Res, 2004, 148(1): 89-96.
[9] Deng JB, Yu DM, Li MSh. Formation of the entorhino-hippocampal pathway: a tracing study in vitro and in vivo [J]. Neuroscience Bulletin, 2006, 22(6): 305-314.
邓锦波, 于东明, 李明善. 内嗅皮质海马神经投射通路的形成——体内及体外示踪研究(英文) [J]. 神经科学通报, 2006, 22(6): 305-314.
[10] Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex [J]. Science, 2004, 305(5688): 1258-1264.
[11] Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex [J]. Nature, 2005, 436(7052): 801-806.
[12] Van Groen T, Kadish I, Wyss JM. Species differences in the projections from the entorhinal cortex to the hippocampus [J]. Brain Res Bull, 2002, 57(3-4): 553-556.
[13] Bartesaghi R, Di Maio V, Gessi T. Topographic activation of the medial entorhinal cortex by presubicular commissural projections [J]. J Comp Neurol, 2005, 487(3): 283-299.
[14] Senturk A, Pfennig S, Weiss A, et al. Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration [J]. Nature, 2011, 472(7343): 356-360.
[15] Van Groen T, Miettinen P, Kadish I. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation [J]. Hippocampus, 2003, 13(1): 133-149.
[16] Deng JB, Wang GM,Zhao ShT, et al. Morphological and histochemical study of hippocampal dentate gyrus in reeler mice[J]. Acta Anatomica Sinica, 2009, 40(4):522-526. (in Chinese)
邓锦波, 王桂敏, 赵善廷, 等. Reeler小鼠海马齿状回形态结构与组织化学研究 [J]. 解剖学报, 2009, 40(4): 522-526.
[17] Rakic P. A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering [J]. Cereb Cortex, 2006, 16 (Suppl 1):13-17.
[18] Wang X, Babayan AH, Basbaum AI, et al. Loss of the Reelin-signaling pathway differentially disrupts heat, mechanical and chemical nociceptive processing [J]. Neuroscience, 2012, 226:441-450.
[19] Lakatosova S, Ostatnikova D. Reelin and its complex involvement in brain development and function [J]. Int J Biochem Cell Biol, 2012, 44(9): 1501-1504.
[20] Zhao PW, Yan MCh, Li RL, et al. The role of Reelin in the evolution of the central nervous system [J]. Acta Anatomica Sinica, 2016, 47(2): 166-177.(in Chinese)
赵培文, 鄢明超, 李瑞玲, 等. Reelin在中枢神经系统进化过程中的作用 [J]. 解剖学报, 2016, 47(2): 166-177.
[21] Forster E. Reelin, neuronal polarity and process orientation of cortical neurons [J]. Neuroscience, 2014, 269:102-111.
[22] Borrell V, Pujadas L, Simo S, et al. Reelin and mDab1 regulate the development of hippocampal connections [J]. Mol Cell Neurosci, 2007, 36(2): 158-173.
[23] Soriano E, Del Rio JA. The cells of cajal-retzius: still a mystery one century after [J]. Neuron, 2005, 46(3): 389-394.
[24] Anst?tz M, Huang H, Marchionni I, et al. Developmental profile, morphology, and synaptic connectivity of Cajal-Retzius cells in the postnatal mouse hippocampus [J]. Cereb Cortex, 2016,26(2): 855-872.
[25] Ceranik K, Deng J, Heimrich B, et al. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies [J]. Eur J Neurosci, 1999, 11(12): 4278-4290.
[26] Del Rio JA, Heimrich B, Borrell V, et al. A role for Cajal-Retzius cells and reelin in the development of hippocampal connections [J]. Nature, 1997, 385(6611): 70-74.
[27] Fame RM, Macdonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons [J]. Trends Neurosci, 2011, 34(1): 41-50.

基金

国家自然科学基金

PDF(1039 KB)

Accesses

Citation

Detail

段落导航
相关文章

/