大鼠急性心肌梗死后干细胞抗原-1和Nanog阳性细胞的动态变化

杨黎晓 任明芬 郭志坤

解剖学报 ›› 2017, Vol. 48 ›› Issue (4) : 457-462.

PDF(2065 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2065 KB)
解剖学报 ›› 2017, Vol. 48 ›› Issue (4) : 457-462. DOI: 10.16098/j.issn.0529-1356.2017.04.015
组织学胚胎学发育生物学

大鼠急性心肌梗死后干细胞抗原-1和Nanog阳性细胞的动态变化

  • 杨黎晓1 任明芬2 郭志坤1*
作者信息 +

Dynamic changes of stem cell antigen-1 and Nanog positive stem cells after acute myocardial infarction in rats

  • YANG Li-xiao1 REN Ming-fen2 GUO Zhi-kun1*
Author information +
文章历史 +

摘要

目的 观察大鼠急性心肌梗死后心肌干细胞在梗死病程中的动态变化。 方法 成年SD大鼠50只,结扎冠状动脉前降支制备急性心肌梗死模型,在术前及术后1周、2周、3周和4周分别检测心功能指标:左室射血分数(LVEF)、左室短轴缩短率(LVFS)、左室舒张末期内径(LVEDD)、左室舒张末期容积(LVEDV)和左室后壁舒张末期厚度(LVPWT)。取各组大鼠新鲜心脏,石蜡切片、Masson染色,确定心肌梗死的病理变化。利用免疫组织化学技术对各组心脏切片进行免疫染色,观察干细胞抗原-1(Sca-1)、Nanog阳性心肌干细胞的动态变化。对每组切片阳性表达的细胞数进行定量分析。利用Western blotting技术观察Sca-1、Nanog的蛋白含量。 结果 大鼠心功能于术后1周开始降低,自第3周稳定于较低水平;Masson染色显示心肌梗死区域瘢痕组织明显,证实模型制备成功;免疫组织化学结果显示,Sca-1、Nanog阳性心肌干细胞数量在2周时上升至高峰,随后下降。 结论 Sca-1、Nanog阳性心肌干细胞在心肌梗死病理演变过程中呈先上升后下降的趋势,提示心肌干细胞在心肌损伤和修复过程中发挥了重要作用。

Abstract

Objective To explore the significance of the dynamic changes of cardiac stem cells after the acute myocardial infarction in rats. Methods The anterior descending coronary artery of 50 healthy adult SD rats was ligated to prepare an acute myocardial infarction model. Cardiac function indicators, including the left ventricular ejection fraction (LVEF), left ventricular shortening fraction(LVFS), left ventricular end-diastolic diameter (LVEDD), left ventricular end-diastolic volume (LVEDV) and diastolic left ventricular posterior wall thickness (LVPWT) were detected by echocardiography preoperatively and 1 week, 2 weeks, 3 weeks and 4 weeks postoperatively. The hearts of each group of rats were collected. Paraffin sections were stained with Masson to determine the pathological changes of myocardial infarction. The heart slices of all groups were immune-colored by using immunohistochemical technique and the dynamic changes in stem cell antigen-1(Sca-1)+ and Nanog+ myocardial stem cells were observed. The number of cells expressed in each group were quantitatively analyzed. The protein content of Sca-1 and Nanog was observed by Western blotting. Results The rat cardiac function began to reduce 1 week after the operation, and maintained at a relatively lower level 3 weeks later. Masson staining showed obvious scar tissue in myocardial infarction area, which confirmed the success of model preparation. The immunohistochemical result showed that the Sca-1 and Nanog positive cardiac stem cells number rose to a peak at 2 weeks and decreased afterwards. Conclusion Sca-1 and Nanog positive cardiac stem cells showed a tendency to rise first and then decrease during the pathological changes of myocardial infarction, suggesting that myocardial stem cells may play an important role in myocardial injury and repair. Masson to determine the pathological changes of myocardial infarction. The heart slices of all groups were immune-colored by using immunohistochemical technique and then the dynamic changes in stem cell antigen-1(Sca-1)+ and Nanog+ myocardial stem cells were observed. The number of cells expressed in each group was quantitatively analyzed. The protein content of Sca1 and Nanog was observed by Western blotting.  Results The rat cardiac function began to reduce 1 week after the operation, and maintained at a relatively lower level 3weeks later; Masson staining showed obvious scar tissue in myocardial infarction area, which confirmed the success of model preparation; The immunohistochemicalresult showed that the Sca1 and Nanog positive cardiac stem cells number rose to a peak at 2 weeks and decreased afterwards.  Conclusion Sca1 and Nanog positive cardiac stem cells showed a tendency to rise first and then decrease during the pathological changes of myocardial infarction, Suggesting that myocardial stem cells play an important role in myocardial injury and repair.

关键词

心脏 / 干细胞抗原-1 / Nanog / 心肌梗死 / 免疫组织化学 / 大鼠

Key words

Heart / Stem cell antigen-1 / Nanog / Myocardial infarction / Immunohistochemistry / Rat

引用本文

导出引用
杨黎晓 任明芬 郭志坤. 大鼠急性心肌梗死后干细胞抗原-1和Nanog阳性细胞的动态变化[J]. 解剖学报. 2017, 48(4): 457-462 https://doi.org/10.16098/j.issn.0529-1356.2017.04.015
YANG Li-xiao REN Ming-fen GUO Zhi-kun. Dynamic changes of stem cell antigen-1 and Nanog positive stem cells after acute myocardial infarction in rats[J]. Acta Anatomica Sinica. 2017, 48(4): 457-462 https://doi.org/10.16098/j.issn.0529-1356.2017.04.015

参考文献

[1]Leri A,Kajstura J,Anversa P, et al.Cardiac stem ceils and mechanisms of myocardial regeneration[J].Physiol Rev,2005,85(4):1373-1416.
[2]Chimenti C, Kajstura J, Torella D, et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure[J]. Circ Res, 2003,93(7):604-613. [3]Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart[J]. Proc Natl Acad Sci USA,2006,103(24):9226-9231.
[4]Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation,and fusion after infarction[J]. Proc Natl Acad Sci USA, 2003,100(21): 12313-12318.
[5]Beltrami AP,  Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell, 2003, 114(6):763-776.
[6]Luo H, Li Q, Pramanik J, et al. Nanog expression in heart tissues induced by acute myocardial infarction[J]. Histol Histopathol, 2014,29(10): 1287-1293.
[7]Chang Y, Li H, Guo Z. Mesenchymal stem cell-like properties in fibroblasts[J].Cell Physiol Biochem, 2014, 34(3):703-714. 
[8]Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction[J]. N Engl J Med, 2001,344(23):1750-1757.
 [9]Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science, 2009,324(5923):98-102.
[10]Li J, Wang Y, Du W,et al. Sca-1-positive cardiac stem cell migration in a cardiac infarction model [J].Inflammation, 2013, 36(3):738-749.
[11]Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and futuredirections[J]. Circ Res, 2013,113(6):810-834.
[12]Prowse AB,Timmins NE,Yau TM,et al. A therapy: transforming the promise of pluripotent stem cell-derived cardiomyocytes to challeges and solutions for clinical trials[J].Can J Cardiol,2014,30(11):1335-1349.
[13]Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell[J]. EMBO J,2015, 34(6):710-738.
[14]Cavaleri F, Sch?ler HR. Nanog: a new recruit to the embryonic stem cell orchestra[J]. Cell, 2003, 113(5):551-556.
[15]Guo ZhK. Current Cardiac Histology[M]. Beijing: People's Health Publishing Company, 2016:187-194.(in Chinese)
郭志坤.现代心脏组织学[M].北京:人民卫生出版社,2016: 187-194.
[16]Abbott A. Doubts over heart stemcell therapy[J].Nature,2014,509(7498):15-26.

基金

河南省科技攻关课题

PDF(2065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/