缺氧诱导因子1在肿瘤细胞免疫逃避中的作用

熊伟鹏

解剖学报 ›› 2016, Vol. 47 ›› Issue (6) : 859-961.

PDF(175 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(175 KB)
解剖学报 ›› 2016, Vol. 47 ›› Issue (6) : 859-961. DOI: 10.16098/j.issn.0529-1356.2016.06.025
综述

缺氧诱导因子1在肿瘤细胞免疫逃避中的作用

  • 熊伟鹏*
作者信息 +

Role of hypoxia-inducible factor-1 in immune escape of tumor cells

  • XIONG Wei-peng*
Author information +
文章历史 +

摘要

缺氧是肿瘤的重要特征。在肿瘤发生过程中,缺氧诱导因子1是协调缺氧变化的重要的调节因子。缺氧和缺氧诱导因子1可以调节肿瘤内的免疫应答,缺氧通过激活缺氧诱导因子1 及其下游信号通路诱导肿瘤细胞产生多种机制以逃避免疫系统的识别和攻击。作者主要综述了缺氧诱导因子1介导的肿瘤免疫逃避,以及针对缺氧诱导因子1靶向药物的开发。

Abstract

Hypoxia is a hallmark of tumor, and hypoxia-inducible factor (HIF-1) is an essential regulator of hypoxia adaptation in tumor progression. Hypoxia and HIF-1 signaling are important components of the tumor microenvironment that modulates the tumor immune response. Tumor hypoxia via HIF-1 signaling enables tumor cell to develop mechanisms to evade from immune surveillance and attack. This mini-review emphasizes on the molecular mechanisms of HIF-1-mediated tumor cell escape and the development of inhibitors targeting HIF-1.

关键词

缺氧诱导因子1 / 肿瘤 / 免疫逃避

Key words

Hypoxia-inducible factor 1 / Tumor / Immune escape

引用本文

导出引用
熊伟鹏. 缺氧诱导因子1在肿瘤细胞免疫逃避中的作用[J]. 解剖学报. 2016, 47(6): 859-961 https://doi.org/10.16098/j.issn.0529-1356.2016.06.025
XIONG Wei-peng. Role of hypoxia-inducible factor-1 in immune escape of tumor cells[J]. Acta Anatomica Sinica. 2016, 47(6): 859-961 https://doi.org/10.16098/j.issn.0529-1356.2016.06.025

参考文献

[1]LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology [J]. Nat Cell Biol, 2016, 18(4):356-365.
[2]Rankin EB, Giaccia AJ. Hypoxic control of metastasis [J]. Science, 2016, 352(6282):175-180.
[3]Pouyssequr J, Dayan F, Mazure NM. Hypoxia signaling in cancer and approaches to enforce tumour regression [J]. Nature, 2006, 441(7092):437-443.
[4]Barsoum IB, Koti M, Siemens DR, et al. Mechanisms of hypoxia-mediated immune escape cancer [J]. Cancer Res, 2014, 74(24):7185-7190.
[5]Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects [J]. Nat Rev Immunol, 2004, 4(12):941-952.
[6]Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment [J]. Carcinogenesis, 2009, 30(3):377-386.
[7]Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression [J]. Cancer Meta Rev, 2007, 26(3-4):525-534.
[8]Whiteside TL, Mandapathil M, Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg) [J]. Curr Med Chem, 2011, 18(34):5217-5223.
[9]Yang L, Yamagata N, Yadav R, et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor [J]. J Clin Invest, 2003, 111(5):727-735.
[10]Serafini P, Mgebroff S, Noonan K, et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells [J]. Cancer Res, 2008, 68(13):5439-5449.
[11]Barsoum IB, Hamilton TK, Li X, et al. Hypoxia induces escape from innate immunity in cancer cells viaincreased expression of ADAM10: role of nitric oxide [J]. Cancer Res, 2011, 71(24):7433-7441.
[12]Barsoum IB, Smallwood CA, Siemens DR, et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells [J]. Cancer Res, 2014, 74(3):665-674.
[13]Wu AA, Drake V, Huang HS, et al. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells [J]. Oncoimmunology, 2015, 4(7):1-14.
[14]Medina PJ, Adams VR. PD-1 pathway inhibitors: immune-oncology agents for restoring antitumor immune responses [J]. Pharmacotherapy, 2016, 36(3):317-334.
[15]Gharwan H, Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications [J]. Nat Rev Clin Oncol, 2016, 13(4):209-227.
[16]Zhang H, Lu H, Xiang L, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells [J]. Proc Natl Acad Sci USA, 2015, 112(45):E6215-6223.
[17]Jardon MA, Rothe K, Bortnik S, et al. Autophagy: from structure to metabolism to therapeutic regulation [J]. Autophagy, 2013, 9(12):2180-2182.
[18]Paggetti J, Viry E, Berchem G, et al. Hypoxia-induced autophagy in tumor cells: a key target for improving cancer immunotherapy [J]. Cancer Cell & Microenviron, 2014, 1(e213):1-5.
[19]Ajdukovic J. HIF-1-a big chapter in the cancer tale [J]. Exp Oncol, 2016, 38(1):9-12.
[20]Miranda E, Nordgren IK, Male AL, et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells [J]. J Am Chem Soc, 2013, 135(28):10418-10425.
[21]Masoud GN, Li W. HIF-1αpathway: role, regulation and intervention for cancer therapy [J]. Acta Pharm Sin B, 2015, 5(5):378-389.
[22]Zhao T, Ren H, Jia L, et al. Inhibition of HIF-1αby PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma [J]. Oncotarget, 2015, 6(4):2250-2262.
[23]Santoni M, Pantano F, Amantini C, et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma [J]. Biochim Biophys Acta, 2014, 1845(2):221-231.
[24]Karim SM, Zekri J. Chemotherapy for small cell lung cancer: a comprehensive review [J]. Oncol Rev, 2012, 6(1):16-36.
[25]Trafalis DT, Alifieris C, Stathopoulos GP, et al. Phase Ⅱ study of bevacizumab plus irinotecan on the treatment of relapsed resistant small cell lung cancer [J]. Cancer Chemother Pharmacol, 2016, 77(4):713-722.


PDF(175 KB)

Accesses

Citation

Detail

段落导航
相关文章

/