脑深髓静脉的磁敏感加权成像

陈争珍 乔会煌 郭玉 任传根 张小芬 李建策 陈成春

解剖学报 ›› 2016, Vol. 47 ›› Issue (6) : 796-801.

PDF(577 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(577 KB)
解剖学报 ›› 2016, Vol. 47 ›› Issue (6) : 796-801. DOI: 10.16098/j.issn.0529-1356.2016.06.013
解剖学

脑深髓静脉的磁敏感加权成像

  • 陈争珍1 乔会煌2 郭玉1 任传根3 张小芬1 李建策3 陈成春1*
作者信息 +

Susceptibility-weighted imaging of deep medullary veins

  • CHEN Zheng-zhen1 QIAO Hui-huang2 GUO Yu1 REN Chuan-gen3 ZHANG Xiao-fen1 LI Jian-ce3 CHEN Cheng-chun 1*
Author information +
文章历史 +

摘要

目的 运用磁敏感加权成像(SWI)技术对健康人群深髓静脉进行显影,从而获取深髓静脉的管径、长度、分布及回流途径的数据。方法 对60名健康志愿者进行3.0T的磁共振检查。所得原始图像经Extended MR workspace 2.6.3.4图像工作站后处理后,获取相关数据。通过Photoshop CC 2015将T1WI与SWI重建图进行融合,分析静脉走形与周围脑组织的关系。结果 深髓静脉在SWI重建图像上能清晰显影,其直径较为统一,范围在0.2~0.3mm。根据深髓静脉的分布,可以将深髓静脉划分为3个区:前区位于额叶深部白质;中区位于中央前后回、缘上回、角回深部白质;后区位于枕叶深部白质。深髓静脉在前区的数量为4~10支;在中区为8~19支;在后区为3~7支。深髓静脉在中区的长度最长。前区、中区和后区的深髓静脉分别回流到透明隔前静脉和尾状核前静脉、尾状核横静脉、侧脑室内侧静脉。结论 SWI技术可以清晰显示深髓静脉,这为构建脑髓质静脉网络提供了可能,同时也为异常的深髓静脉的划定标准提供了依据。

Abstract

Objective To investigate the caliber, length, distribution and drainage of deep medullary veins by using susceptibility-weighted imaging (SWI). Methods Sixty healthy volunteers were examined using SWI on a 3.0T magnetic resonance system. The raw data were transferred to the Extended MR Workspace 2.6.3.4 workstation. The SWI images were reconstructed by using minimum intensity projections (mIPs) technique in the transverse plane. The SW images were combined with the corresponding images of T1WI by using Photoshop CC (Adobe Systems, USA) to visualize the positional relationship between the course of veins and the cerebral structures. Results Firstly, the caliber of deep medullary veins was basically same and ranged from 0.2-0.3mm. Secondly, according to the position, the deep medullary veins were divided into three area: the anterior, central and posterior. Thirdly, the incidence of the deep medullary veins ranged from 4-10 in the anterior area, 8-19 in the central area, 3-7 in the posterior area. Fourthly, the deep medullary veins in the central area were longer than other areas. Finally, the deep medullary veins in the anterior, central, posterior area were respectively drained into the anterior septal vein and anterior caudate vein, the transverse caudate vein, and the medial atrial vein. Conclusion Our study suggests that SWI of the deep medullary veins is feasible to create the cerebral medullary venous network without using a contrast agent and provides more theories to the classification and mechanism about abnormality of deep medullary veins.

关键词

深髓静脉 / 静脉回流 / 磁敏感加权成像 /

Key words

Deep medullary vein / Venous drainage / Susceptibility-weighted imaging / Human

引用本文

导出引用
陈争珍 乔会煌 郭玉 任传根 张小芬 李建策 陈成春. 脑深髓静脉的磁敏感加权成像[J]. 解剖学报. 2016, 47(6): 796-801 https://doi.org/10.16098/j.issn.0529-1356.2016.06.013
CHEN Zheng-zhen QIAO Hui-huang GUO Yu REN Chuan-gen ZHANG Xiao-fen LI Jian-ce CHEN Cheng-chun. Susceptibility-weighted imaging of deep medullary veins[J]. Acta Anatomica Sinica. 2016, 47(6): 796-801 https://doi.org/10.16098/j.issn.0529-1356.2016.06.013

参考文献

[1]Hooshmand I, Rosenbaum AE, Stein RL. Radiographic anatomy of normal cerebral deep medullary veins: criteria for distinguishing them from their abnormal counterparts[J]. Neuroradiology, 1974, 7 (2): 75-84.
[2]Huang YP, Wolf BS. Veins of the white matter of the cerebral hemispheres (the medullary veins)[J]. Am J Roentgenol Radium Ther Nucl Med, 1964, 92: 739-755.
[3]Nakagawa I, Taoka T, Wada T, et al. The use of susceptibility-weighted imaging as an indicator of retrograde leptomeningeal venous drainage and venous congestion with dural arteriovenous fistula: diagnosis and follow-up after treatment[J]. Neurosurgery, 2013, 72 (1): 47-54, 55.
[4]Faure M, Voormolen M, Van der Zijden T, et al. Developmental venous anomaly: MR and angiographic features[J]. JBR-BTR, 2014, 97 (1): 17-20.
[5]Zeng C, Chen X, Li Y, et al. Cerebral vein changes in relapsing-remitting multiple sclerosis demonstrated by three-dimensional enhanced T (2)-weighted angiography at 3.0 T[J]. Eur Radiol, 2013, 23 (3): 869-878.
[6]Yan S, Wan J, Zhang X, et al. Increased visibility of deep medullary veins in leukoaraiosis: a 3-T MRI study[J]. Front Aging Neurosci, 2014, 6: 144.
[7]Zhang XF, Li JC, Wen CY, et al. Visualization of the thalamostriate vein and its tributaries on susceptibility-weighted imaging[J]. Acta Anatomica Sinica, 2016, 47 (1): 72-79. (in Chinese)
张小芬,李建策,闻彩云,等. 丘纹静脉及其属支的可视化磁敏感加权成像[J]. 解剖学报, 2016, 47 (1): 72-79.
[8]Cai M, Zhang XF, Qiao HH, et al. Susceptibility-weighted imaging of the venous networks around the brain stem[J]. Neuroradiology, 2015, 57 (2): 163-169.
[9]Ishizaka K, Kudo K, Fujima N, et al. Detection of normal spinal veins by using susceptibility-weighted imaging[J]. J Magn Reson Imaging, 2010, 31 (1): 32-38.
[10]Mucke J, Mohlenbruch M, Kickingereder P, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome[J]. PLoS One, 2015, 10 (4): e120801.
[11]Amemiya S, Aoki S, Takao H. Venous congestion associated with developmental venous anomaly: findings on susceptibility weighted imaging[J]. J Magn Reson Imaging, 2008, 28 (6): 1506-1509.
[12]Wycliffe ND, Choe J, Holshouser B, et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study [J]. J Magn Reson Imaging, 2004, 20 (3): 372-377.
[13]Okudera T, Huang YP, Fukusumi A, et al. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere[J]. Neuropathology, 1999, 19 (1): 93-111.
[14]Kaplan HA. The transcerebral venous system. An anatomical study [J]. Arch Neurol, 1959, 1: 148-152.
[15]Wang L, Ling SY, Fu XM, et al. Neuronavigation-assisted endoscopic unilateral cyst fenestration for treatment of symptomatic septum pellucidum cysts[J]. J Neurol Surg A Cent Eur Neurosurg, 2013, 74 (4): 209-215.
[16]Park DJ, Kim YH, Han JH, et al. Primary intracranial germ cell tumor originating from septum pellucidum that mimics central neurocytoma[J]. J Clin Oncol, 2012, 30 (27): e274-e277.
[17]Hicdonmez T, Turan SH, Butuc R, et al. Treatment of a large and symptomatic septum pellicidum cyst with endoscopic fenestration in a child—case report and review of the literature[J]. Clin Neurol Neurosurg, 2012, 114 (7): 1052-1056.
[18]Hirsch JF, Zouaoui A, Renier D, et al. A new surgical approach to the third ventricle with interruption of the striothalamic vein[J]. Acta Neurochir (Wien), 1979, 47 (3-4): 135-147.
[19]Elhammady MS, Heros RC. Cerebral veins: to sacrifice or not to sacrifice, that is the question[J]. World Neurosurg, 2015, 83 (3): 320-324.
[20]Horie N, Morikawa M, Nozaki A, et al. “Brush Sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease[J]. AJNR Am J Neuroradiol, 2011, 32(9): 1697-1702.
[21]Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children[J]. AJNR Am J Neuroradiol, 2008, 29 (1): 9-17.
[22]Reichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique[J]. Neuroradiology, 2001, 43 (5): 364-369.
[23]Mohammed W, Xunning H, Haibin S, et al. Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review[J]. Cancer Imaging, 2013, 13(2): 186-195.
[24]Davidson L, Mccomb JG. The safety of the intraoperative sacrifice of the deep cerebral veins[J]. Childs Nerv Syst, 2013, 29(2): 199-207.
[25]Hassler O. Deep cerebral venous system in man. A microangiographic study on its areas of drainage and its anastomoses with the superficial cerebral veins[J]. Neurology, 1966, 16(5): 505-511.

基金

脑髓质与基底核区静脉网络的 SWI 三维数字化构建


PDF(577 KB)

Accesses

Citation

Detail

段落导航
相关文章

/