早期应激对小鼠纹状体神经元发育的影响

许本柯 苗莹莹 孙安邦 何云 刘洋 陈运才

解剖学报 ›› 2016, Vol. 47 ›› Issue (4) : 449-455.

PDF(878 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(878 KB)
解剖学报 ›› 2016, Vol. 47 ›› Issue (4) : 449-455. DOI: 10.16098/j.issn.0529-1356.2016.04.003
神经生物学

早期应激对小鼠纹状体神经元发育的影响

  • 许本柯1 苗莹莹孙安邦1 何云1 刘洋1 陈运才1,3*
作者信息 +

Effects of early-life stress on the development of the striatal neurons of mouse

  • XU Ben-ke1 MIAO Ying-ying2 SUN An-bang1 HE Yun1 LIU Yang1 CHEN Yun-cai 1,3*
Author information +
文章历史 +

摘要

目的 探讨早期应激对背侧纹状体多棘神经元发育的影响。 方法 通过改变新生小鼠(出生后第2~9天)的生长环境建立早期应激动物模型,采用原位杂交、Golgi染色和体视学分析方法,定量分析应激小鼠背内侧纹状体和背外侧纹状体内神经元胞体、树突和树突棘的改变。 结果 9d龄C57BL/6J小鼠的纹状体神经元含丰富的树突分支和树突棘。持续7d的应激主要影响背外侧纹状体,表现为纹状体神经元的近胞体树突分支增多(应激组9.50±0.38,n=8;对照组6.50±0.23, n=6;P<0.05),树突分支上含大量丝状伪足(每20 μm树突节段:应激组8.15±0.51,n=8;对照组3.85±0.33,n=6;P<0.05),但树突棘数量减少(每20 μm树突节段:应激组12.05±0.91,n=8;对照组20.02±0.73,n=6;P<0.05)。 结论 早期应激主要干扰背外侧纹状体神经元树突的发育,导致树突棘的成熟延缓。

Abstract

Objective To study the impact of early-life stress on the development of spiny neurons in the dorsal striatum. Methods The early-life stress animal model was created by changing the growth environment of new born mouse pups from postnatal day(P)2 to P 9 (P2-P9). The in situ hybridization, Golgi staining, and stereological analysis were employed to investigate the effect of stress on the soma, dendritic branches, and spines of striatal neurons. Results The striatal neurons in P9 C57BL/6J contained numerous dendritic branches and spines. Stress from P2 to P9 particularly affected the striatal neurons in the dorsolateral region, leading to abundant proximal dendritic branches (9.50±0.38 vs 6.50±0.23, n=6.8,P<0.05), and increased number of filopodia (8.15±0.51 vs 3.85±0.33 per 20 μm dendritic segment, n=6.8,P<0.05), but reduced dendritic spines (12.05±0.91 vs 20.02±0.73 per 20 μm dendritic segment, n=6.8,P<0.05). Conclusion Early-life stress interrupted the dendritic differentiation and postponed the maturation of spines of striatal neurons in the dorsolateral striatum.

关键词

纹状体 / 早期应激 / 树突棘 / 发育 / 原位杂交 / 小鼠

Key words

Striatum / Early-life stress / Dendritic spine / Development / In situ hybridization / Mouse

引用本文

导出引用
许本柯 苗莹莹 孙安邦 何云 刘洋 陈运才. 早期应激对小鼠纹状体神经元发育的影响[J]. 解剖学报. 2016, 47(4): 449-455 https://doi.org/10.16098/j.issn.0529-1356.2016.04.003
XU Ben-ke MIAO Ying-ying SUN An-bang HE Yun LIU Yang CHEN Yun-cai. Effects of early-life stress on the development of the striatal neurons of mouse[J]. Acta Anatomica Sinica. 2016, 47(4): 449-455 https://doi.org/10.16098/j.issn.0529-1356.2016.04.003

参考文献

[1]Yin HH, Knowlton BJ, Balleine BW. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning [J]. Behav Brain Res, 2006, 166(2): 189-196. 
[2]van den Bos R. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools [J]. Behav Pharmacol, 2015, 26(1-2):6-17. 
[3]Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action [J]. Neuropsychopharmacology, 2010, 35(1): 48-69. 
[4]Dias-Ferreira E, Sousa JC, Melo I, et al. Chronic stress causes frontostriatal reorganization and affects decision-making [J]. Science, 2009, 325(5940): 621-625.
[5]Packard MG. Anxiety, cognition, and habit: a multiple memory systems perspective [J]. Brain Res, 2009, 1293(10):121-128. 
[6]Porcelli AJ, Lewis AH, Delgado MR. Acute stress influences neural circuits of reward processing [J]. Front Neurosci, 2012, 6(11):157.
[7]Phelps EA, Lempert KM, Sokol-Hessner P. Emotion and decision making: multiple modulatory neural circuits [J]. Annu Rev Neurosci, 2014, 37:263-287.
[8]Chen Y, Baram TZ. Toward understanding how early-life stress reprograms cognitive and emotional brain networks [J]. Neuropsychopharmacology, 2016, 41(1):197-206. 
[9]Ivy AS, Rex CS, Chen Y, et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors [J]. J Neurosci, 2010, 30(39):13005-13015. 
[10]Brunson KL, Kramár E, Lin B, et al. Mechanisms of late-onset cognitive decline after early-life stress [J]. J Neurosci, 2005, 25(41):9328-9338.
[11]Rice CJ, Sandman CA, Lenjavi MR, et al. A novel mouse model for acute and long-lasting consequences of early life stress [J]. Endocrinology, 2008, 149(10):4892-4900.
[12]Wang XD, Chen Y, Wolf M, et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodelling [J]. Neurobiol Dis, 2011, 42(3):300-310. 
[13]Knott GW, Holtmaat A, Wilbrecht L, et al. Spine growth precedes synapse formation in the adult neocortex in vivo [J]. Nat Neurosci, 2006, 9(9):1117-1124.
[14]Xu BK, Sun AB, He Y, et al. The distribution and age-related changes of CRF axon terminals in the developing and adult rat dorsal striatum [J]. Chinese Journal of Neuroanatomy, 2015, 31(4): 497-504. (in Chinese)
许本柯,孙安邦,何云,等. 发育早期和成年大鼠背侧纹状体内CRF轴突终末的分布和变化 [J]. 神经解剖学杂志, 2015, 31(4): 497-504. 
[15]Liu H, Han F, Shi YX. Expression of Caspase-12 in cellular apoptosis of hippocampus in the rat model of posttraumatic stress disorder [J]. Acta Anatomica Sinica, 2014, 45(4): 452-456. (in Chinese)
刘虹,韩芳,石玉秀. 创伤后应激障碍大鼠海马神经元凋亡中Caspase-12的表达 [J]. 解剖学报, 2014,45(4): 452-456.
[16]Packard MG, Goodman J. Factors that influence the relative use of multiple memory systems [J]. Hippocampus, 2013, 23(11):1044-1052.
[17]Gasbarri A, Pompili A, Packard MG, et al. Habit learning and memory in mammals: behavioral and neural characteristics [J]. Neurobiol Learn Mem, 2014, 114: 198-208. 
[18]Xu BK, Liu BJ, Chen YC. The molecular composition and regulatory proteins of dendritic spines [J]. Anatomy Research, 2013, 35(6): 449-453. (in Chinese)
许本柯,刘本菊,陈运才. 树突棘的分子组成和调节蛋白 [J]. 解剖学研究, 2013,35(6): 449-453.
[19]Chen Y, Andres AL, Frotscher M, et al. Tuning synaptic transmission in the hippocampus by stress: the CRH system [J]. Front Cell Neurosci, 2012, 6(4):13. 
[20]Chen Y, Bender RA, Brunson KL, et al. Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus [J]. Proc Natl Acad Sci USA, 2004, 101(44):15782-15787. 
[21]Xu BK, He Y, Chen YC. Current status of stress modulator CRF and dendritic spines [J]. Chinese Journal of Neuroanatomy, 2014, 30(4): 482-484. (in Chinese)
许本柯,何云,陈运才. 应激调节因子CRF与神经元树突棘研究现状 [J]. 神经解剖学杂志, 2014, 30(4): 482-484.

基金

湖北省“楚天学者计划”基金


PDF(878 KB)

Accesses

Citation

Detail

段落导航
相关文章

/