Wnt-10a在氯高铁血红素诱导K562细胞分化过程中的作用
Functions of Wnt-10a during K562 cell differentiation induced by hemin
目的 探讨Wnt-10a在氯高铁血红素(hemin)诱导K562细胞分化过程中的变化及功能。 方法 通过联苯胺染色检测K562细胞被hemin诱导的阳性率,利用Western blotting和免疫细胞化学分析K562细胞诱导分化过程中Wnt-10a表达水平和细胞定位的变化情况,通过半定量PCR与Real-time PCR检测K562细胞诱导分化过程中Wnt信号途径关键因子的表达水平及其变化,通过Wnt信号途径激活剂与构建Wnt-10a高表达K562细胞株的方法探讨Wnt途径改变后对K562细胞诱导分化的影响。 结果 在hemin诱导K562细胞分化过程中,细胞中的Wnt-10a蛋白表达量和mRNA量都出现了短暂下降后回复的趋势,同时Wnt-10a向胞膜迁移,Wnt蛋白所参与的3条信号途径中关键因子的表达水平均有着不同程度的变化。使用Wnt信号通路抑制剂后,诱导分化过程中的细胞增殖活力加强,Wnt-10a高表达的K562细胞被hemin诱导分化的能力开始提高,并且Wnt经典信号途径的关键因子表达水平也有上升。 结论 Wnt-10a与hemin诱导K562细胞红系分化的过程密切相关。
Objective To study expression changes and functions of Wnt-10a protein in K562 differentiation induced by hemin. Methods Benzidine staining was used to test hemininduced erythroid differentiation of K562 cells. Western blotting and immunocytochemistry were used to detect protein expression changes of Wnt-10a and protein localization in K562 cells. Real-time PCR and Real-time PCR were applied to investigate mRNA expression of key proteins in Wnt signalling pathway during K562 defferentiation process. Wnt signaling pathway activator and Wnt-10a high expression K562 cell line were used to explore the influence of altered Wnt pathway. Results Wnt-10a protein and mRNA expressions were upregulated after a brief down in the erythroid differentiation process of K562 cells induced by hemin when, Wnt-10a protein migrated to the cell membrane. The key factors of the main Wnt signaling pathways changed during K562 differentiation. By using Wnt signaling pathway inhibitor, cell proliferation capability was enhanced during K562 differentiation by hemin. When Wnt-10a was highly expressed, the ability of induced differentiation of K562 cells was improved. Conclusion These results show that -10a protein is closely related with K562 cell differentiation induced by hemin, which may offer clues for further study of the mechanism of leukemia and cell differentiation.
Wnt-10a / K562 / 氯高铁血红素 / 红系 / 分化 / 免疫印迹法 / 人
Wnt-10a / K562 / Hemin / Erythroid / Differentiation / Western blotting / Human
[1]Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive philadelphia chromosome[J]. Blood, 1975, 45(3): 321-334.
[2]Huo XF, Yu J, Peng H, et al. Differential expression changes in k562 cells during the hemin-induced erythroid differentiation and the phorbol myristate acetate (pma)-induced megakaryocytic differentiation[J]. Mol Cell Biochem, 2006, 292(1-2): 155-167.
[3]Nakajima O, Iwasaki S, Hashimoto Y. Hemin-induced erythroid differentiation of human myeloleukemia K562 cell line and its modification by bioresponse modifiers[J]. Cell Mol Biol, 1997, 43(1): 115-134.
[4]Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of human k562 leukemia cells involves inhibition of erk and activation of p38 map kinase pathways[J]. Blood, 2000, 95(7): 2391-2396.
[5]Kamano H, Tanaka T, Ohnishi H, et al. Effects of the antisense myb expression on hemin-and erythropoietin-induced erythroid differentiation of k562 cells[J]. Biochem Mol Biol Int, 1994, 34(1): 85-92.
[6]Woon Kim Y, Kim S, Geun Kim C, et al. The distinctive roles of erythroid specific activator gata-1 and nf-e2 in transcription of the human fetal gamma-globin genes[J]. Nucleic Acids Res, 2011, 39(16): 6944-6955.
[7]Chan JY, Han XL, Kan YW. Isolation of cdna encoding the human nf-e2 protein[J]. Proce Nati Acad Sci USA, 1993, 90(23): 11366-11370.
[8]Lento W, Congdon K, Voermans C, et al. Wnt signaling in normal and malignant hematopoiesis[J]. Cold Spring Harb Perspect Biol, 2013, 5(2): 1-10
[9]Wolda SL, Moon RT. Cloning and developmental expression in xenopus laevis of seven additional members of the wnt family[J]. Oncogene, 1992, 7(10): 1941-1947.
[10]Kelly GM, Lai CJ, Moon RT. Expression of wnt10a in the central nervous system of developing zebrafish[J]. Dev Biol, 1993, 158(1): 113-121.
[11]Gelebart P, Anand M, Armanious H, et al. Constitutive activation of the wnt canonical pathway in mantle cell lymphoma[J]. Blood, 2008, 112(13): 5171-5179.
[12]Bohring A, Stamm T, Spaich C, et al. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes[J]. Am J Hum Genet, 2009, 85(1): 97-105.
[13]Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol, 2004, 20(1)781-810.
[14]Gao B, Song H, Bishop K, et al. Wnt signaling gradients establish planar cell polarity by inducing vangl2 phosphorylation through ror2[J]. Dev Cell, 2011, 20(2): 163-176.
[15]Montcouquiol M, Crenshaw EB, Kelley MW. Noncanonical wnt signaling and neural polarity[J]. Ann Rev Neurosci, 2006, 29(1)363-386.
[16]Austin TW, Solar GP, Ziegler FC, et al. A role for the wnt gene family in hematopoiesis: expansion of multilineage progenitor cells[J]. Blood, 1997, 89(10): 3624-3635.
[17]Tran HT, Sekkali B, Van Imschoot G, et al. Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo[J]. Proc Nati Acad Sci USA, 2010, 107(37): 16160-16165.
[18]Van Den Berg DJ, Sharma AK, Bruno E, et al. Role of members of the wnt gene family in human hematopoiesis[J]. Blood, 1998, 92(9): 3189-3202.
[19]Dijksterhuis JP, Petersen J, Schulte G. Wnt/frizzled signalling: Receptor-ligand selectivity with focus on fzd-g protein signalling and its physiological relevance: Iuphar review 3[J]. Br J Pharmacol, 2014, 171(5): 1195-1209.
[20]Miller JR. The Wnts[J]. Genome Biol, 2002, 3(1): REVIEWS3001. Epub 2001 Dec 28.
[21]Plaisancie J, Bailleul-Forestier I, Gaston V, et al. Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia[J]. Am J Med Gene A, 2013, 161A(4): 671-678.
[22]Vink CP, Ockeloen CW, ten Kate S, et al. Variability in dentofacial phenotypes in four families with wnt10a mutations[J]. Eur J Hum Genet, 2014, 22(9): 1063-1070.
/
〈 |
|
〉 |