Reeler小鼠皮质片层化及细胞极性化
Cortical lamination and cellular polarization in reeler mice
目的 探讨 Reelin 在皮质片层化形成及细胞分化、极性化中的作用及相关机制。 方法 取 reeler 小鼠和野生型(WT)小鼠受孕17 d(E17)至出生21d(P21)各年龄点脑部共96例。免疫荧光标记技术与 5’-溴脱氧尿嘧啶核苷(BrdU)法检测两组小鼠大脑发育中放射状胶质细胞、增殖的神经干细胞及极性蛋白的表达,并使用 Nissl 染色技术及 DiI 示踪技术分别对新皮质分子层发育、海马 CA1 区锥体细胞极性方位以及皮质锥体细胞极性程度进行统计。 结果 Reeler 小鼠大脑发育中齿状回内放射状胶质细胞数量减少,极性紊乱,BrdU阳性细胞散在分布,数量减少;由于极性细胞未得到适当的终止信号越过皮质Ⅱ层进入分子层,皮质片层化紊乱;大脑皮质及海马锥体细胞极性发生改变。 结论 Reelin 在神经细胞迁移、神经元增殖和皮质片层化的过程中发挥重要作用,尤其对锥体细胞极性起着至关重要的影响。
Objective To investigate the role of Reelin in the process of cortical lamination, cell differentiation and polarization as well as the relevant regulatory effects of Reelin signaling pathway. Methods A total of 96 wild-type (WT) mice and reeler mice from embryonic day 17(E17) to postnatal day 21(P21) were used in this study. The radial glial cells, neural stem cells, and polarity protein were visualized by utilizing immunofluorescent labeling, Nissl staining,5-bromo-deoxyuridine(BrdU) assay and DiI tracing method. The polarity of pyramidal cells in cerebral cortex and hippocampus were also measured. Results Comparing with WT mice, the cortical lamination was disordered due to the lack of Reelin in reeler mice. The orientations of radial glial cells were disorder accompanied with number decreases. BrdU positive cells were arranged in dispersion accompanied with number increase. Conclusion Reelin plays an important role in the development of neuronal migration, neural proliferation and cortical lamination, especially in the process of polarization of pyramidal cells.
Reelin / 细胞分化 / 细胞极性化 / 片层化 / 免疫荧光 / 小鼠
Reelin / Cell differentiation / Cell polarization / Lamination / Immunofluorescence / Mouse
[1]Gui LR, Wang ZhF. Progress of related gene of reelin[J]. Foreign Medical Sciences(Section of Genetics), 2006, 28(6): 325-328. (in Chinese)
桂兰润, 王振福. reelin相关基因研究进展[J]. 国外医学: 遗传学分册, 2006, 28(6): 325-328.
[2]Rice DS, Curran T. Role of the reelin signaling pathway in central nervous system development[J]. Annu Rev Neurosci, 2001, 24(1):1005-1039.
[3]Zhao S, Frotscher M. Go or stop? Divergent roles of Reelin in radial neuronal migration[J]. Neuroscientist, 2010, 16(4): 421-434.
[4]Yan MCh, Niu YL, Wang XQ, et al. Reelin and the cerebellar development——the regulatory effect of Notch1 signaling pathways[J]. Acta Anatomica Sinica, 2015, 46 (2):182-189. (in Chinese)
鄢明超, 牛艳丽, 王小青, 等. Reelin与小脑发育——Notch1信号通路的调节作用[J]. 解剖学报. 2015. 46(02).182-189.
[5]Fu X, Shi ZhY, Jin HX, et al. Effect of hippocampal microenvironment on cells’ differentiation and polarity[J]. Acta Anatomica Sinica, 2013, 44 (5):586-593. (in Chinese)
符星, 石贞玉, 金海啸, 等. 海马微环境对细胞分化和极性化的影响[J]. 解剖学报, 2013, 44(5): 586-593.
[6]Wang JY, Rao Q. The RHO protein family and cell polarity [J]. Chinese Journal of Cell Biology, 2008, 26(4): 45-49. (in Chinese)
王继英, 饶青. RHO蛋白家族与细胞极性[J]. 细胞生物学杂志, 2008, 30(4): 45-49.
[7]Chen HL, Chen XP. Par polarity complex in mammalian neurogenesis[J]. Hereditas, 2013, 35(3): 281-286. (in Chinese)
陈慧灵, 陈晓萍. 哺乳动物神经发育中的 Par 极性复合体[J]. 遗传, 2013, 35(3): 281-286.
[8]Deng JB, Xu XB, Fan WJ. Neocortical development and formation of lamination [J]. Progress of Anatomical Sciences, 2008, 14(4):423-428, 431. (in Chinese)
邓锦波, 徐晓波, 范文娟. 新皮质的发育与片层化构筑的形成[J]. 解剖科学进展, 2008, 14(4):423-428, 431.
[9]Hashimoto-Torii K, Torii M, Sarkisian MR, et al. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex[J]. Neuron, 2008, 60(2):273-284.
[10]Hawthorne AL. Repurposing Reelin: the new role of radial glia, Reelin and Notch in motor neuron migration[J]. Exp Neurol, 2014, 256:17-20.
[11]Lakoma J, Garcia-Alonso L, Luque JM. Reelin sets the pace of neocortical neurogenesis[J]. Development, 2011, 138(23):5223-5234.
[12]Keilani S, Healey D, Sugaya K. Reelin regulates differentiation of neural stem cells by activation of notch signaling through Disabled-1 tyrosine phosphorylation[J]. Can J Physiol Pharmacol, 2012, 90(3):361-369.
[13]Kipp M, Gingele S, Pott F, et al. BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions[J]. Brain Behav Immun, 2011, 25(8):1554-1568.
[14]Zhu Q, Zhao YH, Liu XQ, et al. Bromodeoxyuridine assay for detecting the proliferation of neural progenitor cells in mice at different ages[J]. Chinese Journal of Tissue Engineering Research, 2012, 16(6): 994-997. (in Chinese)
朱茜, 赵云鹤, 刘雪芹, 等. BrdU 标记法检测不同年龄阶段小鼠神经前体细胞的增殖潜能 [J]. 中国组织工程研究, 2012, 16(6): 994-997.
[15]Zhao J, Qu Y, Mu DZh. Polarity proteins in central nervous system development [J]. Journal of International Pathology and Clinical Medicine, 2011, 31(4): 296-300. (in Chinese)
赵婧, 屈艺, 母得志. 极性蛋白与中枢神经系统发育[J]. 国际病理科学与临床杂志, 2011, 31(4): 296-300.
[16]Bush G, diSibio G, Miyamoto A, et al. Ligand-induced signaling in the absence of furin processing of Notch1[J]. Dev Biol, 2001, 229(2): 494-502.
[17]Wodarz A. Establishing cell polarity in development[J]. Nat Cell Biol, 2002, 4(2): E39-E44.
[18]Meseke M, Rosenberger G, F?rster E. Reelin and the Cdc42/Rac1 guanine nucleotide exchange factor αPIX/Arhgef6 promote dendritic Golgi translocation in hippocampal neurons[J]. Eur J Neurosci, 2013, 37(9): 1404-1412.
[19]F?rster E. Reelin, neuronal polarity and process orientation of cortical neurons[J]. Neuroscience, 2014, 269: 102-111.
国家自然科学基金面上项目;NSFC-河南人才培养联合基金;河南大学优青及种子基金;河南省教育厅项目
/
〈 |
|
〉 |