淡水涡虫眼点形态发生相关基因研究进展
Review on the genes involved in eyes morphogenesis in freshwater planarian
涡虫是动物界最早出现两侧对称、三胚层、营自由爬行生活的动物类群,在动物系统演化中占有重要地位。由于涡虫眼点结构简单,再生能力极强,因此成为研究视觉系统形成、进化及再生的理想模型。我们以日本三角涡虫(Dugesia japonica)为例,对淡水涡虫眼点的结构、形态发生过程及眼点再生相关基因进行概述,重点介绍眼点形态发生过程中与眼点前体细胞分化、视神经纤维生长、视觉系统功能恢复及眼点视杯形成相关基因的表达模式及功能分析,并对目前存在的问题及未来的发展进行总结和展望。为探索高等动物包括人类的视觉系统的形成机制提供参考。
Planarians are the earliest free-living platyhelminthes with triploblast and bilateral-symmetry and are the important animal group from water-inhabitation to land. They play an important role in studying the systematic evolution of animals. More importantly, planarians are the invertebrate model for the formation of the visual system, regeneration, evolution and development due to their simple eyes and powerful regenerative ability. In this paper, we summarize the genes involved in the regeneration of eyes of the planarian Dugesia japonicaand their expression patterns and functional analysis during the differentiation of the eye precursor cells, optic nerve fiber growth, functional recovery of the visual system and the optic cup formation. We discusse some important questions which remain unclear in the eye regeneration and gave the prospects. Our provide some clues to the research on visual system of the higher animals.
[1]Morgan TH. Experimental studies of the regeneration of planaria maculata[J]. Arch Entwicklungsmech Org, 1898, 7(2-3):364-397.
[2]Dong ZM, Yuwen YQ, Wang QH, et al. Expression analysis of Djsix-1 gene during regeneration of planarian eyespots[J]. Mol Biol Rep, 2011, 38(6):3977-3982.
[3]Kuchiiva T, Kuchiiva S, Techirogi W. Comparative morphological studies on the visual systems in a binocular and a multi-ocular species of freshwater Planarian [J]. Hydrobiologia, 1991, 227(1): 241-249.
[4]Okamoto K, Takeuchi K, Agata K. Neural projections in planarian brain revealed by fluorescent dye tracing[J]. Zool Sci, 2005, 22(5): 535-546.
[5]Saló E, Pineda D, Marsal M, et al. Genetic network of the eye in Platyhelminthes: expression and functional analysis of some players during planarian regeneration[J]. Gene, 2002, 287 (1-2): 67-74.
[6]Czerny T, Halder G, Kloter U, et al. Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development[J]. Mol Cell, 1999, 3(3): 297-307.
[7]Pineda D, Rossi L, Batistoni R, et al. The genetic network of prototypic planarian eye regeneration is Pax6 independent[J]. Development, 2002, 129(6): 1423-1434.
[8]Tanaka EM, Reddien PW. The cellular basis for animal regeneration[J]. Dev Cell, 2011, 21(1): 172-185.
[9]Yamamoto H, Agata K. Optic chiasm formation in planarian I: cooperative netrin-and robo-mediated signals are required for the early stage of optic chiasm formation[J]. Dev Growth Differ, 2011, 53(3): 300-311.
[10]Mannini L, Rossi L, Deri P, et al. Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1[J]. Dev Biol, 2004, 269(2): 346-359.
[11]Dong ZM,Yuwen YQ, Wang QH, et al. Eight genes expression patterns during visual system regeneration in Dugesia japonica[J]. Gene Expr Patterns, 2012, 12 (1-2):1-6.
[12]Karandikar UC, Jin M, Jusiak B, et al. Drosophila eyes absent is required for normal cone and pigment cell development[J]. PLoS One, 2014, 9(7): e102143.
[13]Kanska J, Frank U. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian[J]. J Cell Sci, 2013, 126(14):3192-3203.
[14]Handberg-Thorsager M, Saló E. The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration[J]. Dev Genes Evol, 2007, 217(5): 403-411.
[15]Chen CC, Wang IE, Reddien PW. pbx is required for pole and eye regeneration in planarians[J]. Development, 2013, 140(4): 719-729.
[16]Lapan SW, Reddien PW. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration[J]. Cell Rep, 2012, 2(2): 294-307.
[17]Furukawa T, Morrow EM , Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation[J]. Cell, 1997, 91(4): 531-541.
[18]Freund CL, Gregory-Evans CY, Furukawa T, et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor[J]. Cell, 1997, 91(4): 543-553.
[19]Arenas-Mena C, Wong KS. HeOtx expression in an indirectly developing polychaete correlates with gastrulation by invagination[J]. Dev Genes Evol, 2007, 217(5): 373-384.
[20]Arendt D, Denes AS, Jekely G,et al. The evolution of nervous system centralization[J]. Phil Trans R Soc B, 2008, 363(1496): 1523-1528.
[21]Stornaiuolo A, Bayascas JR, Salò E, et al. A homeobox gene of the orthodenticle family is involved in antero-posterior patterning of regenerating planarians[J]. Int J Dev Biol, 1998,42(8): 1153-1158.
[22]Umesono Y, Watanabe K, Agata K. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes[J]. Dev Genes Evol, 1999, 209(1): 31-39.
[23]Quiring R, Walldorf U, Kloter U, et al. Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans[J]. Science, 1994, 265(5173): 785-789.
[24]Halder G , Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila[J]. Science, 1995, 267(5205): 1788-1792.
[25]Chow RL, Altmann CR, Lang RA , et al. Pax6 induces ectopic eyes in a vertebrate[J]. Development, 1999,126(19): 4213-4222.
[26]Gehring WJ, Ikeo K. Pax 6: mastering eye morphogenesis and eye evolution[J]. Trends Genet, 1999, 15(9): 371-377.
[27]Yan Q, Gong L, Deng M, et al. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development[J]. Proc Natl Acad Sci USA, 2010, 107(49):21034-21039.
[28]Yoshida MA, Yura K, Ogura A. Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants [J]. Scientic Reports, 2014, 4:4256.
[29]Cebrià F, Newmark PA. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture[J]. Development, 2005, 132(16): 3691-3703.
[30]Lu X, Le Noble F, Yuan L, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system[J]. Nature, 2004, 432(7014): 179-186.
[31]Guo H, Jia Y, Shang M, et al. Comparison of twoin vitroangiogenesis assays for evaluating the effects of netrin-1 on tube formation[J]. Acta Biochim Biophys Sin, 2014,46(9): 810-816.
[32]Cebrià F, Nakazawa M, Mineta K, et al. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes[J]. Dev Growth Differ, 2002, 44(2): 135-146.
[33]Inoue T, Kumamoto H, Okamoto K, et al. Morphological and functional recovery of the planarian photosensing system during head regeneration[J]. Zool Sci, 2004, 21(3): 275-283.
[34]Cebrià F, Newmark PA. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians[J]. Development, 2007, 134(5): 833-837.
[35]Bielecki J, Zaharoff AK, Leung NY. Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa)[J].PLoS One, 2014, 9(6):e98870.
[36]Pineda D, Gonzalez J, Marsal M, et al. Evolutionary conservation of the initial eye genetic pathway in planarians[J]. Belg J Zool, 2001, 131(1): 77-82.
[37]S ánchez Alvarado A, Newmark PA. Double-stranded RNA specifically disrupts gene expression during planarian regeneration[J]. Proc Natl Acad Sci USA, 1999, 96(9): 5049-5054.
[38]Pineda D, Gonzalez J, Callaerts P, et al. Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians[J]. Proc Natl Acad Sci USA, 2000, 97(9): 4525-4529.
[39]Tamamaki N. Evidence for the phagocytotic removal of photoreceptive membrane by pigment cells in the eye of the planarian, Dugesia japonica[J]. Zool Sci, 1990, 7(3): 385-393.
[40]Lapan SW, Reddien PW. dlx and sp6-9 control optic cup regeneration in a prototypic Eye[J]. PLoS Genet, 2011, 7(8): e1002226.
秦岭山脉淡水三肠目涡虫分类和区系研究;我国青藏高原淡水三肠目涡虫分类区系研究;横断山区淡水涡虫生态学及进化生物学研究;我国青藏高原淡水三肠目涡虫分类区系研究;淡水涡虫神经再生基因和神经生长因子基因的克隆表达及应用;Sox基因家族日本三角涡虫中的克隆及表达分析;多目涡虫眼点相关基因的克隆及表达分析;淡水涡虫神经生长因子基因的克隆表达及应用
/
〈 |
|
〉 |