核纤层蛋白A、转录因子TBX3、缝隙连接蛋白43表达与小鼠胚胎心发育
石锐 景雅* 师亮 杨艳萍 刘慧霞 宋励
解剖学报 ›› 2015, Vol. 46 ›› Issue (2) : 238-243.
核纤层蛋白A、转录因子TBX3、缝隙连接蛋白43表达与小鼠胚胎心发育
Expression patterns of lamin A, TBX3 and connexin 43 in developing mouse embryonic hearts
目的 探讨小鼠胚胎心脏工作心肌和传导系心肌在形态发生和分化过程中核纤层蛋白A(lamin A)、转录因子TBX3、缝隙连接蛋白43(Cx43)的表达特点。
方法 用抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗α-横纹肌肌动蛋白(α-SCA)、抗胰岛因子1(ISL-1)、抗Cx43、抗lamin A和抗转录因子TBX3,对46只胚龄8~15d小鼠胚胎心脏连续石蜡切片进行免疫组织化学及免疫荧光染色。 结果 胚龄9d,TBX3在原始心管的表达集中在房室管壁。10d始,TBX3阳性的表达逐渐从房室管壁沿着静脉瓣延续至窦房结、右心房背侧壁和房间隔。胚龄12~13d,TBX3阳性表达结构构成了中枢传导系雏形,包括窦房结、左右静脉瓣、房间隔、房室管、房室结和房室束。Cx43首先在胚龄9d的左心室腹侧壁和部分小梁心肌出现弱阳性表达,随着发育,Cx43逐渐在TBX3阴性的心房、心室工作心肌表达。Lamin A首先出现在10d房室管心内膜垫间充质细胞和左心室部分小梁心肌,随后在右心室小梁心肌出现,至胚龄15d,心室和心房小梁心肌及房室瓣均可见lamin A阳性表达,但致密心肌和中枢传导系心肌持续呈阴性表达。 结论 中枢传导系统雏形在小鼠胚龄13d形成,呈TBX3阳性,Cx43阴性的互补性表达。致密心肌和中枢传导系心肌在15d仍为lamin A表达阴性,说明此部分心肌分化成熟较晚。
Objective To explore the morphogenesis and differentiation of working myocardium and conduction myocardium in mouse embryonic heart and expression patterns of lamin A, TBX3 and connexin 43 (Cx43). Methods Both the immunohistochemical and immunofluorescent methods were used to observe the relationship of α-smooth muscle actin(α-SMA), myosin heavy chain(MHC), islet-1(ISL-1), Cx43, lamin A and TBX3 distribution patterns in 46 mice embryos from embryonic day(ED)8 to 15 with the myocardial differentiation. Results At ED9, strong TBX3 expression was mainly displayed in the myocardium of the atrioventricular canal. From ED10 onwards, TBX3 expression extended towards the sinus node along the venous valves and the dorsal wall of the right atrium, including interatrial septum. At ED12-13, the prototype of central conduction system of embryonic heart composed by the sinus node, the left and right venous valves, interatrial septum, atrioventricular canal, atrioventricular node and the atrioventricular bundle was recognized, which showed TBX3 positive expression. Cx43 weak expression first appeared in the ventral wall of the left ventricle and part of the trabecular myocardium at ED9. With the development, the expression of Cx43 was displayed in the atrial and ventricular working myocardium with the TBX3 negative expression. Lamin A expression first appeared in ectomesenchymal cells of atrioventricular canal endocardial cushion and part of the left ventricular trabecular myocardium at ED10. Then the expression of lamin A displayed in the right ventricular trabecular myocardium. At ED15, the positive expression of lamin A distributed in the atrioventricular valves, ventricular and atrial trabecular myocardium. However, lamin A expression in compact myocardium and central conduction system remained negative. Conclusion The prototype of central conduction system is formed at ED13, showing TBX3 positive expression and Cx43 negative expression, which is a kind of complementary expression. The expression of lamin A in the compact myocardium and central conduction system myocardium remain negative at ED15, indicating that these parts of myocardium are matured later.
核纤层蛋白A / TBX3 / 缝隙连接蛋白43 / 工作心肌 / 传导系心肌 / 免疫组织化学 / 免疫荧光 / 小鼠
Lamin A / TBX3 / Connexin 43 / Working myocardium / Conduction myocardium / Immunohistochemisty / Immunofluorescence / Mouse
[1]Hoogaars WM, Tessari A, Moorman AF, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart [J]. Cardiovasc Res, 2004, 62(3):489-499.
[2]Bakker ML, Boukens BJ, Mommersteeg MT, et al. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system [J].Circ Res, 2008, 102(11):1340-1349.
[3]Gourdie RG, Severs NJ, Green CR, et al. The spatial distribution and relative abundance of gap-junctional connexin 40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system [J]. J Cell Sci, 1993, 105(4):985-991.
[4]Jung HJ, Coffinier C, Choe Y, et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA [J], Proc Natl Acad Sci USA, 2012, 109(7):423-431.
[5]Park DS, Fishman GI. The Cardiac Conduction System [J]. Circulation, 2011, 123(8):904-915.
[6]Bertrand AT, Renou L, Papadopoulos A, et al. DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death [J]. Hum Mol Genet, 2012, 21(5):1037-1048.
[7]Mounkes LC, Kozlov SV, Rottman JN, et al. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice [J]. Hum Mol Genet, 2005, 14(15):2167-2180.
[8]Lakdawala NK, Winterfield JR, Funke BH. Dilated Cardiomyopathy[J]. Circ Arrhythm Electrophysiol, 2013, 6(1):228-237.
[9]Qiao AX, Jing Y, Cai YJ, et al. Expression patterns of hyperpolarization-activated cyclic nucleotide-gated cation 4, connexin 43 and podoplanin in the embryonic mouse heart and development of cardiac conduction system [J]. Acta Anatomica Sinica, 2012, 43(3):405-411. (in Chinese)
乔爱秀,景雅,蔡玉瑾,等.超极化激活环核苷酸门控阳离子通道4、连接蛋白43和平足蛋白在小鼠胚胎心的表达与心传导系的发生[J].解剖学报,2012,43(3):405-411.
[10]Li HCh, Jing Y, Shi L, et al. Association of morphogenesis of pulmonary endoderm with development of prepharyngeal mesenchyme and outflow tract septation in mouse embryos [J]. Acta Anatomica Sinica, 2013, 44(6):804-811. (in Chinese)
李慧超,景雅,师亮,等.小鼠胚胎呼吸内胚层形态发生与咽前间充质发育及流出道分隔的关系[J].解剖学报,2013,44(6):804-811.
[11]Munshi NV. Gene regulatory networks in cardiac conduction system development [J]. Circ Res, 2012, 110(11):1525-1537.
[12]Blom NA, Gittenberger-de Groot AC, DeRuiter MC, et al. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity [J].Circulation, 1999, 99(6):800-806.
[13]Rentschler S, Vaidya DM, Tamaddon H, et al. Visualization and functional characterization of the developing murine cardiac conduction system [J]. Development, 2001, 128(10):1785-1792.
[14]Erokhina IL, Rumyantsev PP. Proliferation and biosynthetic activities of myocytes from conductive system and working myocardium of the developing mouse heart. Light microscopic autoradiographic study [J]. Acta Histochem, 1988, 84(1):51-66.
[15]Morris GM, D’Souza A, Dobrzynski H, et al. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression [J]. Cardiovasc Res, 2013, 100(1):160-169.
[16]Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice [J]. J Clin Invest, 2004, 113(3):357-369.
[17]Mavroudis C, Backer CL. Pediatric Cardiac Surgery [M].4th ed. US: Wiley, 2013: 1-26.
[18]Holaska JM. Emerin and the nuclear lamina in muscle and cardiac disease [J]. Circ Res, 2008, 103(1):16-23.
[19]Dahl KN, Kalinowski A. Nucleoskeleton mechanics at a glance [J]. J Cell Sci, 2011, 124(5):675-678.
[20]Li HR, Jing Y, Xu XW, et al. Association of α-SCA, α-SMA and desmin with the myocardial maturation of the embryonic mouse heart [J]. Acta Anatomica Sinica, 2005, 36(4): 422-427. (in Chinese)
李海荣,景雅,徐秀文,等. α-SCA、α-SMA和结蛋白与小鼠胚胎心肌发育成熟的关系[J]. 解剖学报,2005,36(4):422-427.
人胚胎第二生心区和心脏流出道的发育;小鼠胚胎心脏流出道发育过程中心肌细胞和心内膜α-SMA阳性细胞变化;人胚胎第二生心区和心脏流出道的发育;小鼠胚胎心背侧间充质突与心房发育
/
〈 |
|
〉 |