藏族正常成人头颅正中矢状面幕上和幕下面积的磁共振成像测量

白芃 李玮 钟铧 王展飞

解剖学报 ›› 2023, Vol. 54 ›› Issue (5) : 567-574.

PDF(3988 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3988 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (5) : 567-574. DOI: 10.16098/j.issn.0529-1356.20.05.010
解剖学

藏族正常成人头颅正中矢状面幕上和幕下面积的磁共振成像测量

  • 白芃1 李玮2 钟铧3* 王展飞4 
作者信息 +

Measurement of the magnetic resonance imaging of the area supratentorial and infratentorial mid-sagittal plane of the normal Tibetan adults

  • BAI Peng1  LI Wei2  ZHONG Hua3* WANG Zhan-fei4
Author information +
文章历史 +

摘要

 目的 探讨藏族正常成人幕上面积、幕下面积和颅腔面积与年龄、性别的关系。   方法 以生活在拉萨市自愿参加的世居藏族成年人为研究对象,有效调查对象158例,年龄 20~59 岁,平均年龄(36.60±10.75)岁,其中男性64 例,女性94 例。利用西门子 MAGNETOM ESSENZA 1.5T 磁共振扫描仪,使用3D-fSPGR序列扫描,将扫描获取的图像以DICOM格式存储,导入到3D Medical医学图像处理软件,利用软件自带的工具包,对感兴趣区域进行勾画。在T1WI 正中矢状位成像上,测量幕上面积、幕下面积和颅腔面积,并计算幕下面积/幕上面积比值,幕上面积/颅腔面积比值,幕下面积/颅腔面积比值。为消除头颅大小的个体差异对脑结构的影响,本研究用同层面颅腔面积,对幕上面积和幕下面积进行校正。   结果 藏族男性幕上面积为(127.91±9.84)cm2,幕下面积为(33.96±3.27)cm2,颅腔面积为(161.86±10.83)cm2;藏族女性幕上面积为(118.75±8.04)cm2,幕下面积为(32.19±3.00)cm2,颅腔面积为(150.94±8.90)cm2,不同性别间幕上面积比较差异存在显著性(t=6.408,P<0.01),幕下面积比较差异存在显著性(t=3.508,P<0.01),颅腔面积比较差异存在显著性(t=6.679,P<0.01)。校正后,藏族男性幕上面积为(122.75±2.96)cm2,幕下面积为(32.66±2.96)cm2;藏族女性幕上面积为(122.23±2.85)cm2,幕下面积为(33.18±2.85)cm2,校正后不同性别幕上面积和幕下面积比较差异均无显著性(P>0.05)。藏族男性除幕下面积、颅腔面积、校正后幕上面积/颅腔面积比3个指标不同年龄组比较差异无显著性外(P>0.05),其余各指标不同年龄组比较显著均存在差异性(P<0.05)。藏族女性各测量指标不同年龄组比较差异均无显著性(P>0.05)。藏族男性与年龄成正相关的指标为实测幕上面积、幕上面积/颅腔面积比、校正后幕上面积(r=0.258、0.363、0.363, P<0.05 或P<0.01),与年龄成负相关的指标为幕下面积/幕上面积比、幕下面积/颅腔面积比、校正后幕下面积/幕上面积比、校正后幕下面积/颅腔面积比(r=-0.363、-0.363、-0.363、-0.312,P<0.05或P<0.01);藏族女性各测量值与年龄相关性不显著(P>0.05)。   结论 藏族正常成年人群平均颅腔面积男性比女性大10.7%,幕上面积男性略大于女性,幕下面积男性略小于女性,校正后无性别差异。 

Abstract

 Objective To explore the relationship between supratentorial area (STA), posterior fossa area (PFA) and intracranial area (ICA) of normal adult Tibetans with age and gender.    Methods The subjects of this study were native Tibetan adults living in Lhasa. Totally 158 sample populations were between the ages of 20 and 59 years, with an average age (36.60± 10.75) years, including 64 males and 94 females. Siemens MAGNETOM ESSENZA 1.5T magnetic resonance scanner was used to scan with 3D-fSPGR sequence, and the images obtained by scanning were stored in DICOM format and imported into 3D Medical medical image processing software, and region of interest was delineated by using the software’s own toolkit. STA, PFA and ICA were measured on T1WI mid-sagittal imaging, and the ratios of PFA/STA, STA/ICA and PFA/ICA were calculated. In order to eliminate the influence of individual differences in skull size on brain structure, this paper corrected the STA and PFA with the same level of ICA, and obtained the relativity of supratentorial area (RSTA )and relativity of posterior fossa area(RPFA).    Results The STA was (127.91±9.84) cm2, PFA was (33.96±3.27) cm2, and ICA was (161.86±10.83) cm2 in Tibetan men. The STA was (118.75±8.04) cm2, PFA was (32.19±3.00) cm2, and ICA was (150.94±8.90) cm2 in Tibetan women. There were significant differences in STA (t=6.408, P<0.01), PFA (t=3.508, P<0.01) and ICA (t=6.679, P<0.01). The RSTA was (122.75±2.96) cm2 and RPFA was (32.66±2.96) cm2 in Tibetan men.The RSTA was (122.23±2.85) cm2 and RPFA was (33.18±2.85) cm2 in Tibetan women. There was no significant difference in RSTA and RPFA between different genders (P>0.05). In Tibetan men, there were no significant differences in PFA, ICA, and RSTA/ICA (P>0.05), and there were significant differences in different age groups in the other indicators( P<0.05). There were no significant differences in the different age groups of Tibetan women (P>0.05). The indicators positively correlated with age in Tibetan men were STA, STA/ICA, RSTA (r=0.258, 0.363, 0.363. P<0.05 or P<0.01), and the indicators negatively correlated with age were PFA/STA, PFA/ICA, RPFA/RSTA, RPFA/ICA (r=-0.363, -0.363, -0.363, - 0.312. P<0.05 or P<0.01). The correlation between the measured values and age of Tibetan women was not significant (P>0.05).    Conclusion The average ICA of normal adult Tibetans is 10.7% larger in men than women. The men STA is slightly larger than that of women, while the men PFA is slightly smaller than that of women. After correction, there is no significant difference between the gender.

关键词

 藏族 / 头颅 / 幕上面积 / 幕下面积 / 颅腔面积 / 磁共振成像 / 成人

Key words

 Tibetan / Head / Supratentorial area / Posterior fossa area / Intracranial area / Magnetic resonance imaging / Adult

引用本文

导出引用
白芃 李玮 钟铧 王展飞. 藏族正常成人头颅正中矢状面幕上和幕下面积的磁共振成像测量[J]. 解剖学报. 2023, 54(5): 567-574 https://doi.org/10.16098/j.issn.0529-1356.20.05.010
BAI Peng LI Wei ZHONG Hua WANG Zhan-fei.
Measurement of the magnetic resonance imaging of the area supratentorial and infratentorial mid-sagittal plane of the normal Tibetan adults
[J]. Acta Anatomica Sinica. 2023, 54(5): 567-574 https://doi.org/10.16098/j.issn.0529-1356.20.05.010
中图分类号: R322    R445.2   

参考文献

 [1]Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. 
 [2]Qian Ch, Yuan YG, Zhao HY, et al. A retrospective analysis of complications related to ventricular entry during surgical resection of supratentorial glioma in adults[J]. Chongqing Medicine, 2022,51(18):3095-3099. (in Chinese) 
钱晨, 袁以刚, 赵洪雨,等. 成人幕上脑胶质瘤切除术中进入脑室相关并发症的回顾性分析[J]. 重庆医学, 2022,51(18):3095-3099. 
 [3]Xu XK, Li JL, Lin JR, et al. Clinicopathological characteristics of central nervous system tumors in 483 children[J]. Academic Journal of Guangzhou Medical University, 2022, 50(4):51-54. (in Chinese) 
许新科, 李军亮, 林锦荣,等. 483例儿童中枢神经系统肿瘤临床及病理特点分析[J]. 广州医科大学学报, 2022, 50(4):51-54. 
 [4]Chen ZR, Wan F, Li YK, et al. Clinical and pathological features of infant and young children brain tumors: single center report of 100 cases[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2019, 19(12): 969-974. (in Chinese) 
陈籽荣, 万锋, 厉亚坤, 等. 婴幼儿脑肿瘤临床及病理学特点: 单中心 100 例分析[J]. 中国现代神经疾病杂志, 2019, 19(12): 969-974. 
 [5]Stoyanov  GS, Dzhenkov DL, Kitanova M, et al. Demographics and incidence of histologically confirmed intracranial tumors: a five-year, two-center prospective study[J]. Cureus, 2017, 9(7): e1476. 
 [6]Lu  F, Zeng GM. MR imaging characteristics of posterior cranial fossa in Chiari malformation type I patients[J]. Chinese Journal of Neuromedicine, 2020, 19(12): 1253-1259. (in Chinese) 
卢峰, 曾广明. Chiari畸形Ⅰ型患者后颅窝MRI特点研究 [J]. 中华神经医学杂志, 2020, 19(12): 1253-1259. 
 [7]Bohn  S, Korb W, Burgert O. A process and criteria for the evaluation of software frameworks in the domain of computer assisted surgery[J]. Med Biol Eng Comput, 2008, 46(12): 1209-1217. 
 [8]Harkey T, Baker D, Hagen J, et al. Practical methods for segmentation and calculation of brain volume and intracranial volume: a guide and comparison[J]. Quant Imaging in Med Surg, 2022, 12(7): 3748-3761. 
 [9]Saini V. Secular trends in cranial chord variables: a study of changes in sexual dimorphism of the North Indian population during 1954-2011[J]. Ann Hum Biol, 2019, 46(6): 519-526. 
 [10]Sahin  B, Acer N, Sonmez OF, et al. Comparison of four methods for the estimation of intracranial volume: a gold standard study[J]. Clin Anat, 2007, 20(7): 766-773. 
 [11]Nandigam  RNK, Chen YW, Gurol ME, et al. Validation of intracranial area as a surrogate measure of intracranial volume when using clinical MRI[J]. J Neuroimaging, 2007, 17(1): 74-77. 
 [12]Ricklan  DE, Tobias PV. Unusually low sexual dimorphism of endocranial capacity in a Zulu cranial series[J]. Am J Phys Anthropol, 1986, 71(3): 285-293. 
 [13]Liu C, Tang Y, Ge H, et al. Increasing breadth of the frontal lobe but decreasing height of the human brain between two Chinese samples from a Neolithic site and from living humans[J]. Am J Phys Anthropol, 2014, 154(1): 94-103. 
 [14]Qian Y, Zhang S, Tan Q, et al. Cranial capacity measurement for modern Chinese adults based on 3D reconstruction[J]. Neurosci J, 2021, 26(3): 277-283. 
 [15]Kim YS, Park IS, Kim HJ, et al. Changes in intracranial volume and cranial shape in modern Koreans over four decades[J]. Am J Phys Anthropol, 2018, 166(3): 753-759. 
 [16]Shepur MP, Magi M, Nanjundappa B, et al. Morphometric analysis of endocranial capacity[J]. Int J Anat Res, 2014, 2(1): 242-248. 
 [17]Eboh DE, Okoro EC, Iteire KA. A cross-sectional anthropometric study of cranial capacity among Ukwuani people of South Nigeria[J].  Malays J Med Sci, 2016, 23(5): 72-82. 
 [18]Ilayperuma I. Cranial capacity in an adult Sri Lankan population: Sexual dimorphism and ethnic diversity[J]. Int J Morphol, 2011, 29(2): 479-484. 
 [19]Jellinghaus K, Hoeland K, Hachmann C, et al. Cranial secular change from the nineteenth to the twentieth century in modern German individuals compared to modern Euro-American individuals[J]. Int J Legal Med, 2018, 132(5): 1477-1484. 
 [20]Abbott AH, Netherway DJ, Niemann DB, et al. CT-determined intracranial volume for a normal population[J]. J Craniofac Surg, 2000, 11(3): 211-223. 
 [21]Eliot L, Ahmed A, Khan H, et al. Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size[J]. Neurosci Biobehav Rev, 2021, 125: 667-697. 
 [22]Caspi Y, Brouwer RM, Schnack HG, et al. Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study[J]. NeuroImage, 2020, 220: 116842. 
 [23]Nerland S, Stokkan TS, Jrgensen KN, et al. A comparison of intracranial volume estimation methods and their cross-sectional and longitudinal associations with age[J]. Hum Brain Mapp, 2022, 43(15):4620-4639. 
 [24]Kruggel F. MRI-based volumetry of head compartments: normative values of healthy adults[J]. Neuroimage, 2006, 30(1): 1-11. 
 [25]Liu X, Zhao JP, Duan ChF, et al. A quantitative study of cranial cavity area on mid-sagittal MR images from normal adults[J]. Acta Anatomica Sinica, 2015, 46(4): 538-542. (in Chinese) 
刘霞, 赵继平, 段崇锋, 等. 颅脑正中矢状面磁共振成像对正常成人颅腔面积的测量[J]. 解剖学报, 2015, 46(4): 538-542. 
 [26]Davis PJM, Wright EA. A new method for measuring cranial cavity volume and its application to the assessment of cerebral atrophy at autopsy[J]. Neuropathology and Applied Neurobiology, 2010, 3(5):341-358.  
 [27]Sanggaya DK. Estimation of cranial capacity in relation to age, sex, weight, height and body mass index (BMI) of Tamilnadu Population[J]. Research J Pharm Tech, 2015, 8(8): 1161-1162.  
 [28]Vega A, Quintana F, Berciano J. Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study[J]. J Neurol Sci, 1990, 99(2-3): 137-145. 
 [29]Zhan M, Cui J, Zhang K, et al. Estimation of stature and sex from skull measurements by multidetector computed tomography in Chinese[J]. Legal Med, 2019, 41: 101625. 
 [30]Song Y, Yan XJ, Zhang JSh, et al. Gender difference in secular trends of body height in Chinese Han adolescents aged 18 years, 1985-2014[J]. Chinese Journal of Epidemiology, 2021, 42(5): 801-806. (in Chinese) 
宋逸, 闫晓晋, 张京舒, 等. 1985-2014年中国汉族18岁青少年身高长期趋势的性别差异变化[J]. 中华流行病学杂志, 2021, 42(5) : 801-806. 
 [31]Belen D. How cranial shapes led to contemporary ethnic classification: a historical view[J]. Turkish Neurosurg, 2018, 28(3):490-494. 
 [32]Roller LA, Bruce BB, Saindane AM. Demographic confounders in volumetric MRI analysis: is the posterior fossa really small in the adult Chiari 1 malformation[J]? Am J Roentgenol, 2015, 204(4): 835-841. 
 [33]Hardaway FA, Holste K, Ozturk G, et al. Sex-dependent posterior fossa anatomical differences in trigeminal neuralgia patients with and without neurovascular compression: a volumetric MRI age-and sex-matched case-control study[J]. J Neurosurg, 2019, 132(2): 631-638. 
 [34]Yang Sh, Tang Ch, Li HB, et al. Effects of age and gender on posterior cranial fossa linear volume and cerebellar tonsil position in normal populations[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(9): 1167-1171. (in Chinese) 
杨胜, 唐超, 李海波, 等. 年龄及性别对正常成人后颅窝线性容积及小脑扁桃体下缘位置的影响[J].中国修复重建外科杂志, 2021, 35(9): 1167-1171. 
 [35]Karag?z F, Izgi N, Sencer SK. Morphometric measurements of the cranium in patients and comparison with the normal population[J]. Acta Neurochir(Wien), 2002, 144(2): 165-171.
 [36]Alko OA, Songur A, Eser O, et al. Stereological and morphometric analysis of MRI Chiari malformation type-1[J]. J Korean Neurosurg Soc, 2015, 58(5): 454-461. 
 [37]Furtado SV, Reddy K, Hegde AS. Posterior fossa morphometry in symptomatic pediatric and adult Chiari I malformation[J]. J Clin Neurosci, 2009, 16(11): 1449-1454. 
 [38]Basaran R, Efendioglu M, Senol M, et al. Morphometric analysis of posterior fossa and craniovertebral junction in subtypes of Chiari malformation[J]. Clin Neurol Neurosurg, 2018, 169: 1-11. 
 

基金

教育部2021年产学合作协同育人项目;成都中医药大学“杏林学者”学科人才提升计划传承创新专项

PDF(3988 KB)

Accesses

Citation

Detail

段落导航
相关文章

/